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1. Introduction

Dimensional reductions of type II theories can lead to N = 2 supergravities in four di-

mensions. The basic well-known realization consists of compactifications on Calabi-Yau

three-folds with no fluxes, in which case the N = 2 effective action is ungauged, and

contains hyper- and vector-multiplets, in addition to the gravitational one [1, 2]. The in-

troduction of NS and RR fluxes in the higher dimensional background is described by a
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deformation of this four dimensional theory in which some specific isometries of the hyper-

scalar quaternionic manifold are gauged1 [5 – 10]. A consistent formulation in the presence

of a complete set of RR fluxes requires the introduction of massive tensor multiplets [8].

Four dimensional theories with more complex gaugings can be derived extending the

class of internal geometries beyond the Calabi-Yau domain. In recent years considerable

efforts have been directed to the study of compactifications on manifolds with SU(3) struc-

ture (with restriction to N = 2 reductions of type II, see [11 – 19]). This class of manifolds

shares with the Calabi-Yau the existence of a globally defined and nowhere vanishing

spinor, but is more general since such spinor needs not being covariantly constant in the

Levi-Civita connection. A further motivation to study SU(3) structure manifolds is that

they arise as mirror-symmetric duals of Calabi-Yau backgrounds with NS fluxes [11].

However, manifolds with strictly SU(3) structure are not the only candidates po-

tentially leading to N = 2 in four dimensions. Indeed, if a globally defined internal

spinor η is clearly needed in order to decompose the two type II susy parameters un-

der Spin(9, 1) → Spin(3, 1) × Spin(6) and preserve eight supercharges in 4d, there is also

the possibility to employ a pair of internal spinors η1 and η2 in this decomposition: one

for each of the ten dimensional susy parameters. The topological requirement associated

with this situation is then that the internal space admit a pair of SU(3) structures, which

may coincide or not.

A crucial point is that these two SU(3) structures can be conveniently described in

the unifying picture of Hitchin’s generalized geometry [20, 21], which studies mathematical

structures defined on the sum T ⊕ T ∗ of the tangent and cotangent bundle of a manifold.

More specifically, the existence of the two SU(3) structures is equivalent to a reduction of

the structure group of TM6 ⊕ T ∗M6 to SU(3) × SU(3). Motivated by the above consid-

erations, we are then led to take this topological fact as a necessary condition for com-

pactifications of type II supergravity to yield an N = 2 effective action in 4d [15, 22]. An

appealing approach to the study of general N = 2 compactifications seems then to assume

the existence of an SU(3)×SU(3) structure as a starting point and then to apply the tools

of generalized geometry to study the dimensional reduction.2

The study of SU(3)× SU(3) structure compactifications preserving eight supercharges

was started in [15] and pursued in [22]. In these papers some relevant terms of the N = 2

action were obtained. In particular, using Hitchin’s results [20] about the special Kähler

geometry on the deformation space of generalized structures, [15] studied the SU(3) struc-

ture deformations, matching them with the internal metric and b-field deformations defining

N = 2 scalar kinetic terms. In [31] we generalized this correspondence to the SU(3)×SU(3)

structure case, also discussing the geometric origin of the period matrices for the N = 2

special Kähler geometry. Furthermore, via a reduction of the gravitino susy transforma-

tions, [15, 22] derived the N = 2 Killing prepotentials defining the 4d gaugings. These con-

tain both electric and magnetic charges, originating from the NS, RR, geometric (and pos-

1A thorough account on gauged and ungauged 4d N = 2 supergravity can be found in [3]. Refs. [4] are

recent reviews on flux compactifications.
2A closely related problem to which generalized geometry has been fruitfully applied is the study of

supersymmetric flux vacua of type II strings, see e.g. [23 – 30].
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sibly non-geometric) background fluxes. The magnetic charges are consistently introduced

in a local N = 2 lagrangian as mass terms for antisymmetric rank-2 tensors [8, 32 – 35].

A further result in this context is that the N = 1 supersymmetry conditions obtained

from the 10d and 4d approaches to type II vacua admitting SU(3) × SU(3) structure were

shown to be equivalent [36, 31].

From a purely four dimensional supergravity perspective, [37] constructed an N = 2

lagrangian containing the same set of charges appearing in the Killing prepotentials of [22].

In particular, a symplectically invariant and mirror symmetric expression for the N = 2

scalar potential was obtained.

Despite these results, a complete derivation of the 4d effective action via the dimen-

sional reduction has not appeared in the literature. The purpose of the present paper is to

fill this gap for what concerns the bosonic sector.

At this point a very important remark is in order: taken alone, the existence of an

SU(3)×SU(3) structure, though necessary, is far from guaranteeing the 4d theory to exhibit

the features of N = 2 supergravity. Indeed, at a first step most of the results described

above were derived working at a point of the internal manifold and preserving all the

Kaluza-Klein modes. In order to get a truly four dimensional action one needs to define

a mode truncation, and this is done expanding the 10d fields on a finite basis of internal

forms. Compatibility with N = 2 supergravity requires this basis to respect a restrictive

set of geometrical constraints, which have been identified in [15, 22], further analysed for

SU(3) structure reductions in [18] and revisited in [31]. It is worth saying that in all these

studies the dimensional reduction is supposed to proceed similarly to the Calabi-Yau one.

However, already for the strictly SU(3) structure case, it is difficult to exhibit an

explicit reduction ansatz. Recently this was achieved in [19] for the particular SU(3)

structure class of nearly Kähler manifolds (previous developements can be found in [14, 18]).

Another point is that, once a reduction ansatz is identified, it is not guaranteed that the

4d fields defined by the truncation do correspond to (all the) light degrees of freedom. In

other words, one should check whether the obtained 4d N = 2 theory also corresponds to a

low energy effective theory, and if the truncation captures all the light degrees of freedom

associated with the compactification under study.

In this paper we will not address these last issues, also due to their background de-

pendence: indeed the standard Kaluza-Klein procedure identifying the masses of the 4d

degrees of freedom passes through the linearization of the equations of motion for fluctua-

tions of the fields around a chosen vacuum. For what concerns the basis forms defining the

truncation, we will assume they satisfy the needed constraints, and study the 4d N = 2

theory as obtained from the dimensional reduction. Furthermore, our analysis is entirely

classical and based on the supergravity approximation.3

Here is a summary of the paper and of its results. Our starting point is the ‘demo-

cratic’ version of type II supergravities formulated in [39], which we shortly review in

section 2. The RR sector is described by a field strength consisting of a sum of forms of

all possible even or odd degrees, and submitted to a self-duality constraint. Because of

3For the relevance of quantum corrections in this generalized geometry context, see [38].
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this homogeneous treatement of the different form degrees, the democratic formulation is

particularly suitable for generalized geometry applications (in which context it was first

adopted in [23]).

Section 3 recalls the needed notions concerning SU(3) × SU(3) structures and their

deformations, and discusses the basis of expansion forms defining the mode truncation.

Next we approach the type II dimensional reduction, studying the NSNS and RR

sectors separately. While the results for the NSNS sector are valid indifferently for IIA and

IIB, for what concerns the RR sector we will concentrate on type IIA.

In section 4 we deal with the reduction of the NSNS sector. We reformulate the

different terms in the generalized geometry language, then we implement the truncation

ansatz. In particular we focus on the 4d scalar potential: we find and prove a formula

expressing the internal NSNS sector in terms of the SU(3)× SU(3) structure data, and we

apply it to derive the scalar potential.

Then in section 5 we turn to the RR sector. Instead of directly reducing the action,

we choose to reduce the equations of motion. Due to the RR self-duality constraint, these

can also be read as Bianchi identities. The expansion of the democratic RR field on the

internal basis automatically introduces forms of all possible degrees in the 4d spacetime.

A subset of the reduced RR equations is interpreted as 4d Bianchi identities, which are

solved defining in this way the 4d fundamental fields. The remaining equations are seen

as 4d equations of motion, from which we reconstruct the reduced action. The theory we

obtain contains massive 2-forms, and is in agreement with the one derived in [37]. Known

results for SU(3) structure compactifications are also recovered.

In section 6 we make some final considerations. We conclude with two appendices:

appendix A summarizes our conventions, while appendix B illustrates the compatibility of

the democratic RR equations of motion with the standard type IIA action, including some

subtleties related to the presence of background fluxes.

2. Democratic formulation of type II supergravity

We start with a brief account of some relevant facts concerning the ‘democratic’ formulation

of type II supergravities given in [39]. We also took a few notions from [40].

We will just consider the bosonic (NSNS + RR) sector of the theory. The NSNS

spectrum consists of the 10d spacetime metric, the 2-form B̂ and the dilaton φ. The

corresponding action has the standard (string frame) form4

SNS =
1

2

∫

M10

e−2φ

(
R̂ ∗ 1 + 4dφ ∧ ∗dφ− 1

2
Ĥ ∧ ∗Ĥ

)
. (2.1)

The 3-form Ĥ is subject to the Bianchi identity

dĤ = 0 , (2.2)

4Here and in the following, the hat symbol denotes ten-dimensional fields (no hat is needed for the

dilaton). See appendix A for our other conventions.
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which for topologically trivial configurations is globally solved by Ĥ = dB̂, while for more

general topologies the global solution is

Ĥ = Ĥfl + dB̂ , (2.3)

where Ĥfl is a cohomologically non-trivial representative (‘fl’ stands for ‘flux’). Notice that

this splitting of Ĥ allows us to work with globally defined quantities: we could have insisted

in writing Ĥ = dB̂, but in this case generically the form B̂ wouldn’t be globally defined.

We now pass to the RR sector. In the democratic approach to type IIA (IIB), it

describes the dynamics of a field F̂ consisting of a formal sum of forms of all possible even

(odd) degrees:

F̂ = F̂0 + F̂2 + · · · + F̂10 in IIA , while F̂ = F̂1 + F̂3 + · · · + F̂9 in IIB. (2.4)

In order to avoid a doubling of the degrees of freedom with respect to the usual formulation

in which only the forms of lower degree appear, a self-duality constraint is imposed on the

RR field. In the Hodge-∗ conventions fixed in appendix A, this constraint reads

F̂ = λ(∗F̂) , with λ(F̂k) = (−)[
k+1
2

]F̂k . (2.5)

In the absence of localized sources, the dynamics of the field F̂ is described by the following

equation of motion (EoM from now on):

(d+ Ĥ∧) ∗ F̂ = 0 ⇔ (d− Ĥ∧)F̂ = 0 , (2.6)

where the two expressions are equivalent due to (2.5). The second one has the form of a

Bianchi identity, and for topologically trivial configurations is globally solved by

F̂ = (d− Ĥ∧)Ĉ + eB̂F̂0 , (2.7)

where Ĉ is a sum of RR potentials of odd (even) degree for type IIA (IIB), F̂0 is a constant

(present only in type IIA), and eB̂ ≡ 1 + B̂ ∧ +1
2B̂ ∧ B̂ ∧ + · · · .

Once (2.7) is established, the first expression in (2.6) can be derived by varying the

potentials Ĉ in the following pseudo-action [39]:

SRR = −1

8

∫

M10

[
F̂ ∧ ∗F̂

]
10
, (2.8)

where the notation [ ]10 means that we pick the form of maximal degree 10. The prefix

‘pseudo-’ means that (2.8) contains redundant RR degrees of freedom, and should be

considered just as a device to obtain their EoM. The redundancy is then removed at the

level of the EoM by the self-duality constraint (2.5), which does not descend from (2.8)

and has be imposed by hand. A further peculiarity of this pseudo-action is that it does

not contain any Chern-Simons term, which is instead present in the usual formulations of

type II supergravities.

A bona fide action, containing just the independent degrees of freedom, can be recov-

ered by breaking the democracy among the RR differential forms: a half of the F̂k has to
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be eliminated exploiting the self-duality relation. The choice of the forms to keep is not

unique, and in some cases the presence of localized sources can suggest the most convenient

option [39, 41]. In appendix B we discuss how the action of standard type IIA supergravity

without localized sources can be recovered, also taking into account a deformation of the

Chern-Simons term due to background fluxes.

In the following we will also need the EoM for the B̂-field, which is obtained by varying

the complete democratic pseudo-action SNS +SRR. After using the first of (2.6), this reads:

d(e−2φ ∗ Ĥ) − 1

2
[F̂ ∧ ∗F̂]8 = 0 . (2.9)

3. SU(3) × SU(3) structures

3.1 Supergravity fields from SU(3) × SU(3) structures

In this section we introduce SU(3) × SU(3) structures on TM6 ⊕ T ∗M6, specifying in this

way the class of 6d manifolds on which we wish to study general dimensional reductions of

type II supergravity. Most of the needed generalized geometry notions have been discussed

in our previous work [31], therefore here we just summarize some fundamentals, together

with the necessary formulas. A more extensive review of generalized geometry can be found

in [27], while for the mathematical details we refer to the original works [20, 21].

The bundle TM6 ⊕ T ∗M6 is naturally endowed with an O(6,6) structure. Reduc-

tions of this structure group can be defined starting from Spin(6, 6) spinors, which are

isomorphically mapped to sections of ∧•T ∗M6, i.e. forms of mixed degree (polyforms). In

the polyform picture, the Clifford action · on Spin(6, 6) spinors is realized by elements of

T ⊕ T ∗ acting on ∧•T ∗ as follows: if X = v + ζ ∈ T ⊕ T ∗ and A ∈ ∧•T ∗, then

X ·A = (ιv + ζ∧)A . (3.1)

An antisymmetric product between two polyforms A,B is defined via the Mukai pairing:

〈A,B〉 = [λ(A) ∧B]6 , (3.2)

where, as in section 2, λ(Ak) = (−)[
k+1
2

]Ak, while [ ]6 picks the form of top degree.

The characterization of an SU(3)× SU(3) structure on TM6 ⊕T ∗M6 requires a pair of

globally defined complex polyforms Φ+ and Φ−, sections of ∧evenT ∗ ⊗ C and ∧oddT ∗ ⊗ C

respectively. Both Φ± have to admit a six-dimensional space of annihilators, i.e. they

should be pure spinors. Furthermore, they need to satisfy the condition

〈Φ+,X · Φ−〉 = 0 = 〈Φ̄+,X · Φ−〉 ∀X ∈ T ⊕ T ∗ . (3.3)

Such a pure spinors pair defines a metric G on T ⊕ T ∗. We demand G be positive definite.

Then Φ± are called compatible. Lastly, we require they have nowhere vanishing, equal

pairings:

〈Φ+, Φ̄+〉 = 〈Φ−, Φ̄−〉 6= 0 . (3.4)

Now, the crucial point for supergravity applications is that the specification of an

SU(3)×SU(3) structure automatically fixes all the NSNS data of the compact space, i.e. it
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provides a metric g, a 2-form b and a dilaton φ on M6. Moreover, it yields a pair of SU(3)

structures forM6, and therefore a pair of globally defined Spin(6) spinors (with positive chi-

rality) η1
+ and η2

+. Let’s see how these data are encoded in the generalized geometry objects.

From Φ± one can build a pair of commuting generalized almost complex structures J±,

i.e. maps T ⊕ T ∗ → T ⊕ T ∗ squaring to −idT⊕T ∗ , via

J Λ
± Σ = 4i

〈ReΦ±,Γ
Λ
ΣReΦ±〉

〈Φ±, Φ̄±〉
, (3.5)

where the indices Λ,Σ = 1, . . . , 12 run over T ⊕ T ∗, and ΓΛΣ denotes the antisymmetric

product of two Cliff(6,6) gamma matrices. Recalling (3.1), at each point of M6 we identify

these gamma matrices with the basis elements of T ⊕T ∗: ΓΛ = (dym∧ , ι∂m). The T ⊕T ∗

indices are lowered with the natural (6, 6)-signature metric IΛΣ =
(0 1
1 0

)
on T ⊕ T ∗, which

also enters in {ΓΛ,ΓΣ} = IΛΣ. We remark that J± in (3.5) do not depend on the overall

phase of Φ±: indeed, since 〈Φ,ΓΛ
ΣΦ〉 = 0 [20], one has 2〈ReΦ,ΓΛ

ΣReΦ〉 = 〈Φ,ΓΛ
ΣΦ̄〉.

A metric G on T ⊕ T ∗ is then obtained via G := −J+J− = −J−J+, and it can be

shown [21] that its general form is:

GΛ
Σ = B

(
0 g−1

g 0

)
B−1 , with B =

(
1 0

−b 1

)
, (3.6)

where bmn is an antisymmetric 2-tensor (to be identified with the NS 2-form), while gmn

is a metric for M6, positive definite thanks to the assumed positive-definiteness of GΛΣ.

Taken alone, G defines a reduction of the T ⊕ T ∗ structure group to O(6)×O(6)⊂O(6,6),

providing a metric g and a 2-form b on M6. The specification of the commuting pair5

J+,J− determines a further reduction to U(3) × U(3), and this implies the existence of a

pair of U(3) structures for TM6. Indeed, it was shown in [21] that J± take the form

J Λ
± Σ =

1

2
B
(
−(I1 ∓ I2) −(J−1

1 ± J−1
2 )

J1 ± J2 IT
1 ∓ IT

2

)
B−1 , (3.7)

where (Ik)
m
n and (Jk)mn (k = 1, 2) are respectively an almost complex structure (Ik : T →

T such that I2
k = −id) and an antisymmetric 2-tensor. Each pair (Ik, Jk) identifies an U(3)

structure for TM6, and is related to the same metric on M6 via gmn = JmpI
p
n.

The further reduction of the T ⊕ T ∗ structure group to SU(3) × SU(3) amounts to

fix the overall phases of Φ+ and Φ− (this also specifies a pair of SU(3) structures inside

the U(3) ones), as well as to choose the pure spinor normalization, on which the previous

definitions of J± and G do not depend. Recalling (3.4), the norm of Φ± corresponds to a

single positive function over M6, which we relate to the dilaton. More precisely, denoting

as vol6 the volume form on M6, we take:

||Φ±||2vol6 := i〈Φ±, Φ̄±〉 = 8e−2φvol6 . (3.8)

5The commuting J+,J− defining a positive definite G are called compatible. It can be shown [29] that

[J+,J−] = 0 is equivalent to eq. (3.3).
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To each pair (Ik, Jk), k = 1, 2, is associated an SU(3)–invariant globally defined Spin(6)

spinor with positive chirality ηk
+ (see subsection A.2 of the appendix for further details on

the relation between SU(3)–invariant spinors and tensors). An explicit relation between

the Spin(6) spinors η1
+ and η2

+ and the Spin(6, 6) pure spinors defining SU(3) × SU(3)

structures with vanishing b-field (call them Φ0
±) is established by6 [24]:

�Φ0
± = 8η1

+ ⊗ η2†
± , (3.9)

where the action of the Clifford map “ / ” is:

/ : dym1 ∧ . . . ∧ dymk 7→ γm1...mk , (3.10)

while to evaluate the bispinor in the rhs of (3.9) the Fierz identity (A.9) is used. We

identify the product of the two nonvanishing Spin(6) spinor norms with the dilaton:

||η1
±|| ||η2

±|| = e−φ , (3.11)

so that (3.8) is ensured by (A.23). SU(3)× SU(3) structures with nonvanishing b can then

be recovered via the following b-transform on Φ0
±:

Φ± = e−bΦ0
± . (3.12)

This ‘bispinor picture’, in which Φ0
± are treated as in (3.9), is often advantageous in

concrete computations. Some more technical details are reported in subsection A.3 of the

appendix. In particular, (A.20) provides an explicit basis for the decomposition of the

elements of ∧•T ∗ in representations of SU(3) × SU(3), while eq. (A.22) illustrates how to

evaluate the Mukai pairing in this picture.

The two Spin(6) spinors η1
+ and η2

+ provided by the SU(3) × SU(3) structure are pre-

cisely the internal spinors to be used in the Spin(9, 1) → Spin(3, 1)×Spin(6) decomposition

of the two type II supersymmetry parameters we mentioned in the introduction. Choosing

to reduce the first 10d susy parameter employing just η1
±, and the second using just η2

±,

yields a decomposition ansatz preserving eight supercharges, and therefore N = 2 in 4d.

Finally, we remark that the two SU(3) structures defined by the SU(3)× SU(3) struc-

ture on T ⊕ T ∗ may also be the same. In this case the internal manifold M6 has a strictly

SU(3) structure, and the spinors η1
+ and η2

+ are everywhere parallel. However, generically

we will consider the two spinors being independent almost everywhere, and becoming par-

allel at some points: in this situation a local SU(2) structure for TM6 is defined, but not a

global one. Nowhere parallel η1
+ and η2

+ identify a global SU(2) structure; this last case is

rather associated with N = 4 compactifications since each of the 10d susy parameters can

be decomposed on either η1
+ and η2

+ [38].

3.2 Deformations of SU(3) × SU(3) structures

Compactifying on a given class of manifolds requires knowledge of the corresponding moduli

space. Indeed, the moduli associated with the internal metric deformations constitute scalar

6Further developements on explicit constructions of compatible pure spinor pairs can be found in [42].
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fields of the compactified theory, and their kinetic terms are specified by the metric on the

space of deformations. In the following we resume the description of SU(3)×SU(3) structure

deformations given in [31], adding some further specifications. Other physical applications

concerning the deformation theory of generalized structures developed in [20, 21, 43] can

be found in [29, 36, 42].

In the notation of [31], we write small deformations of the pure spinors Φ+ and Φ− as:

δΦ± = δκ±Φ± + δtrΦ± + δχ± . (3.13)

Because of condition (3.4), the real parts of the scalars δκ± need to be equal (the imaginary

parts are instead independent). The independent complex deformations δχ− and δχ+,

being sections respectively of the U3̄,3̄ and U3̄,3 bundles defined in subsection A.3 of the

appendix, at each point of M6 can be parameterized using the basis (A.20) as

δχ± = e−bδχ0
± , with δχ0

+ = (δχ+)ı̄1j2γ
ı̄1Φ0

+γ
j2 , δχ0

− = (δχ−)ı̄1 ̄2γ
ı̄1Φ0
−γ

̄2 .

(3.14)

Here and in the following the indices ı̄1, i1 are (anti)holomorphic with respect to the almost

complex structure I1, and analogously for ̄2, j2 with respect to I2. The complex tensors

(δχ+)mn and (δχ−)mn satisfy

P̄ p
1m P q

2n (δχ+)pq = (δχ+)mn , P̄ p
1m P̄ q

2n (δχ−)pq = (δχ−)mn , (3.15)

where (Pk) n
m = 1

2(δ − iIk)
n

m is the holomorphic projector associated with Ik , k = 1, 2.

With respect to [31], in (3.13) we have also considered possible additional deforma-

tions δtrΦ+ and δtrΦ− living in the SU(3)× SU(3) ‘triplets’ (3,1)⊕ (3̄,1)⊕ (1,3)⊕ (1, 3̄).

These are precisely the pure spinor deformations constrained by the compatibility condi-

tion (3.3), which requires them to be performed simultaneously. More specifically, using

the basis (A.20), at a point of M6 a parameterization of these simultaneous variations is

δtrΦ+ = e−b
(
δui1γ

i1Φ̄0
−+ δv̄ı̄2Φ

0
−γ

ı̄2
)

, δtrΦ− = −e−b
(
δui1γ

i1Φ̄0
+ + δvi2Φ

0
+γ

i2
)
, (3.16)

where

δui1 =
1

2
(δ − iI1)

m
i1 δum , δvi2 =

1

2
(δ − iI2)

m
i2 δvm , (3.17)

δum and δvm being real and independent small parameters. Via the Clifford map, expres-

sion (3.16) can be read either in the bispinor picture, or in the polyform picture (in this case
→
γ i1 and

←
γ i2 are mapped to elements of (T ⊕T ∗)⊗C, see subsection A.3 of the appendix).

The pure spinor deformations induce deformations of the associated generalized almost

complex structure. Recalling (3.5), for both even/odd parities the relation is given by:

δJΛΣ = 8i
〈Re(δtrΦ + δχ),ΓΛΣReΦ〉

〈Φ, Φ̄〉 . (3.18)

Notice that the rescaling piece δκ drops.

In [20, 44] Hitchin shows that the space of even (odd) pure spinor deformations at a

point of M6 admits a rigid special Kähler metric, and that a local special Kähler geometry
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can be obtained by taking the quotient with the C∗ action generated by rescalings of Φ+

(Φ−) (see [15] for a detailed review). This quotient coincides with the deformation space of

the associated generalized almost complex structure J+ (J−). The corresponding Kähler

potentials K± are the Hitchin functions

e−K± = i〈Φ±, Φ̄±〉 . (3.19)

Varying K± with respect to the holomorphic/antiholomorphic pure spinor deformations as

done in [31], but this time taking also δtrΦ± in (3.16) into account, yields the metric on the

space of compatible J+,J− , i.e. on the space of U(3)×U(3) structures (at a point of M6):

ds2 = δholoδanti(K++K−) = −〈δχ−, δχ̄−〉
〈Φ−, Φ̄−〉

−〈δχ+, δχ̄+〉
〈Φ+, Φ̄+〉

+2gmn(δumδun+δvmδvn) , (3.20)

where the last term arises from the equal contributions (the computation uses (A.22)):

−〈δtrΦ±, δtrΦ̄±〉
〈Φ±, Φ̄±〉

= gmn(δumδun + δvmδvn) . (3.21)

Since δtrΦ− and δtrΦ+ are not independent, the space of U(3) × U(3) structures with the

metric (3.20) is not a direct product of J+ and J− deformation spaces.

3.3 Truncating to a finite set of modes

In order to dimensionally reduce the higher dimensional supergravity, one has to truncate

the modes of the 10d fields along M6 to a finite set. Such a truncation ansatz can be

specified providing a basis of internal differential forms on which to expand the 10d fields.

In this paper we are interested in general SU(3) × SU(3) structure reductions leading to

N = 2 supergravities in four dimensions: the requirements needed for this to be achieved

were given in [15, 22] and, for SU(3) structure reductions, carefully scrutinized in [18].

In [31] we partially extended this last analysis to the SU(3) × SU(3) structure context. In

this subsection we collect the relations we will need in order to derive the general form of

the four dimensional action. We emphasize that the list we provide is not fully exhaustive.

A first condition for a standard 4d, N = 2 action requires to truncate all the 10d

field components transforming in the (3,1) ⊕ (3̄,1) ⊕ (1,3) ⊕ (1, 3̄) representation of

SU(3) × SU(3): indeed these would assemble in non-standard 4d spin-3/2 multiplets [22,

15]. This requirement concerns in particular the pure spinor deformations δtrΦ± introduced

in subsection 3.2. After the truncation of δtrΦ±, the space of U(3)×U(3) structures splits in

a direct product describing the independent deformations of J+ and J−. As we will see in

subsection 4.1, this space coincides with the deformation space of the generalized metric G,

i.e. of the internal metric and b-field. Notice the similarity with the Calabi-Yau case, where

the (finite-dimensional) moduli space splits in the product of two local special Kähler man-

ifolds describing the independent complex– and Kähler-structure deformations [45]. From

the point of view of 4d N = 2 supergravity, these two sets of Calabi-Yau moduli define

the scalar components of the vector multiplets and a subset of the scalar components of

the hypermultiplets. The special Kähler structure of the vector multiplet scalar manifold
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is necessary in order to have consistency with the N = 2 supergravity formalism, while the

special Kähler manifold associated with the hypersector constitutes the basis of a special

quaternionic manifold [53].

In the general SU(3)×SU(3) structure dimensional reduction, several requirements on

the expansion forms are needed in order to ensure that the local special Kähler structure on

the (now independent) spaces of J− and of J+ deformations at a point of M6 be inherited

by the finite-dimensional spaces of 4d fields identified by the truncation. We call these

spaces M− and M+ respectively, with dimM± = b±.

In order to preserve the symplectic structure defined by the Mukai pairing, these real

basis forms should arrange in symplectic vectors Σ±:

ΣA
+ =

(
ω̃A

ωA

)
, ΣI

− =

(
βI

αI

)
, (3.22)

where Σ+ contains even forms, while Σ− is made of odd forms. A main point is that these

forms need not be of pure degree, i.e. are in general polyforms. The range of the indices

is: A,B = 0, 1, . . . , b+ and I, J = 0, 1, . . . , b−. We also introduce the symplectic indices

A,B = 1, 2, . . . , 2(b+ + 1) and I, J = 1, 2, . . . , 2(b− + 1). The pairings of the basis forms are

then required to satisfy:

∫

M6

〈
ΣA

+,Σ
B
+

〉
= (S+)−1 AB ,

∫

M6

〈
ΣI
−,Σ

J

−

〉
= (S−)−1 IJ , (3.23)

where S± =
( 0 1
−1 0

)
are the symplectic metrics of Sp(2b± + 2,R).

The finite set of modes of the NSNS supergravity fields is specified by defining the

expansion of the pure spinors Φ± determining the SU(3) × SU(3) structure:

Φ+ = XAωA −FAω̃
A , Φ− = ZIαI − GIβ

I . (3.24)

The complex variables XA and ZI represent projective coordinates for the local special

Kähler manifolds M+ and M− respectively, and depend on the 4d spacetime coordinates

only. Furthermore FA = FA(X), while GI = GI(Z). Together these arrange in the sym-

plectic vectors

XA =

(
XA

FA

)
, ZI =

(
ZI

GI

)
. (3.25)

Then the Kähler potentials (3.19), now integrated,

K± = − log i

∫
〈Φ±, Φ̄±〉 (3.26)

take the standard form of special geometry: for instance K+ = − log i(X̄AFA −XAF̄A).

We remark that in general the expansion forms are moduli-dependent (see [18] for a

discussion on this point). However, we assume their derivative with respect to the geometric

moduli vanishes in the integrated symplectic pairing [22, 31].
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A further condition that seems necessary for the dimensional reduction to proceed

analogously to the Calabi-Yau case is that the ratios

〈ΣA
+,Φ+〉

〈Φ+, Φ̄+〉
and

〈ΣI
−,Φ−〉

〈Φ−, Φ̄−〉
be constant on M6. (3.27)

Provided that 〈ZJ∂ZIαJ − GJ∂ZIβJ , Φ̄〉 = 0 (and similarly for the even basis), this is

equivalent to demand that [31]

κ+
A =

〈∂XAΦ+, Φ̄+〉
〈Φ+, Φ̄+〉

and κ−I =
〈∂ZI Φ−, Φ̄−〉
〈Φ−, Φ̄−〉

be constant on M6, (3.28)

where, with reference to (3.13), κ−I is such that δκ− = κ−I δZ
I (and similarly for κ+

A).

Conditions (3.27) and (3.28) are satisfied when M6 is a Calabi-Yau three-fold. To ver-

ify (3.27) one should recall that in the Calabi-Yau case the basis forms in Σ± are harmonic

and the pure spinors take the SU(3) structure form Φ+ = e−φe−b−iJ and Φ− = −ie−φΩ

(see (A.17)). Here J is the Kähler form of the Calabi-Yau, Ω is the holomorphic (3, 0)

form, and the dilaton φ is constant along M6. For instance, for the harmonic (1,1)–forms

ωa the first expression in (3.27) reads:

3
ωa ∧ J ∧ J
J ∧ J ∧ J = ωayJ , (3.29)

where eqs.(A.17) and (A.4) were used. Now, harmonicity of ωa implies ∂m(ωayJ) = 0 [46].

In the general SU(3)× SU(3) structure case (3.27) and (3.28) are non-trivial assumptions,

and we are going to employ them at several points of the dimensional reduction.

In [31] we also discussed the geometric origin of the period matrices NAB and MIJ

associated with the special Kähler structure of M+ and M− respectively. These matrices

were related with the action on the basis polyforms of the 6d b-twisted Hodge dual:

∗b := e−b ∗ λeb . (3.30)

We introduced the matrices:

NA
B :=

∫
〈ΣA

+, ∗bΣ+B 〉 , MI
J :=

∫
〈ΣI
−, ∗bΣ−J 〉 , (3.31)

where Σ+B = S+BCΣC
+, and Σ−J = S−JKΣK

−. Also using assumption (3.28), we arrived at

the result:7

Ñ := −S+N =

(
1 −ReN
0 1

)(
ImN 0

0 (ImN )−1

)(
1 0

−ReN 1

)
, (3.32)

together with an identical expression for M̃ := −S−M, having the period matrix M at the

place of N . It can be deduced from (3.31) that the matrices Ñ and M̃ are symmetric and

negative definite. To see that Ñ is negative definite it is sufficient to notice that

−(ImN )−1 AB =

∫
〈ω̃A, ∗bω̃

B〉=
∫

〈ebω̃A, ∗λ(ebω̃B)〉=
∑

k

∫
(ebω̃A)ky(e

bω̃B)kvol6 , (3.33)

7There is an irrelevant global minus sign with respect to [31], due to a change in the definition of the

Mukai pairing.
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where k denotes the different form degrees of the polyform ebω̃A. The argument for M̃

is completely analogous. This result concerning the action of the ∗b operator generalizes

the well-known expression for the usual Hodge ∗ acting on the Calabi-Yau harmonic 3-

forms [47, 48].

An important property of the basis polyforms in Σ± is that they need not be closed. In-

troducing an exterior derivative twisted by the harmonic piece Hfl of the internal NS 3-form

dHfl = d−Hfl∧ , (3.34)

we assume Σ± satisfy the differential conditions [22]:

dHflΣ− ∼ QΣ+ , dHflΣ+ ∼ Q̃Σ− , (3.35)

where the symbol ∼ means equality up to terms vanishing inside the symplectic pairing,

and Q is a (2b− + 2) × (2b+ + 2) rectangular matrix of constant parameters encoding the

NSNS (Hfl and geometric) fluxes:8

QI
A :=

(
mI

A qIA

eIA p A
I

)
. (3.36)

The matrix Q̃ is simply related to Q: indeed, since
∫
〈dHflΣ−,Σ+〉 =

∫
〈Σ−, dHflΣ+〉, one has

Q̃ = (S+)−1QT S− . (3.37)

The nilpotency (dHfl)2 = 0 implies the quadratic constraints:

Q(S+)−1QT = 0 = QT S−Q . (3.38)

4. Reduction of the NSNS sector

We now apply the notions introduced in the previous section to the dimensional reduction

of type II supergravity, starting from the NSNS sector. We assume a background topology

of the type M10 = M4 × M6, where M4 is the 4d ‘external’ spacetime and M6 is a 6d

‘internal’ compact manifold admitting SU(3) × SU(3) structure on T ⊕ T ∗. Coordinates

along M4 and M6 are denoted by xµ and ym respectively.

Next we introduce a reduction ansatz for the NSNS fields. For the metric we take

ds2 = gµν(x)dxµdxν + gmn(x, y)dymdyn . (4.1)

The NS 3-form Ĥ splits as in (2.3). The cohomologically non-trivial part has just internal

indices: Ĥfl ≡ Hfl, while for the potential B̂ we take

B̂ = B + b , with B = 1
2Bµν(x)dxµ ∧ dxν and b = 1

2bmn(x, y)dym ∧ dyn . (4.2)

8We remark that, as illustrated in [22], the action of the differential operator dHfl cannot realize all the

possible charges in Q. This can be achieved only on a non-geometric background, performing the extension

dHfl → D, where D is an operator encoding both geometric and non-geometric fluxes, first introduced

in [49]. Even if we are not concerned with non-geometric backgrounds here, we find it advantageous to

employ the general symplectically covariant form of Q.
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Finally, we allow a possible dependence of the 10d dilaton on both external and internal

coordinates:

φ = φ(x, y) . (4.3)

The absence of the terms with mixed indices gµn and Bµn in the reduction ansatz is

a well-known feature of Calabi-Yau compactifications: massless 4d fields from these terms

would be in correspondence with covariantly constant vectors on the compact Ricci-flat

manifold, which are forbidden by SU(3) holonomy. In the general SU(3) and SU(3)×SU(3)

structure context a motivation for not to include gµn and Bµn in the truncation ansatz was

given in [15, 22] by observing that these fields transform in the ‘triplets’ of SU(3) × SU(3)

(see the discussion in subsection 3.3 above). Therefore, as in the Calabi-Yau case, the

NSNS sector will provide no 4d vectors: these will instead descend from the RR sector.

One can now plug ansatz (4.1)–(4.3) in (2.1) and derive the NSNS sector decomposition.

The treatment of the quadratic terms in the dilaton φ and NS 3-form Ĥ appearing in (2.1)

being straightforward, we just have to focus on the Einstein-Hilbert term in the action.

Under (4.1) the higher dimensional Ricci scalar becomes

R̂10 = R4 +R6 −
1

4
gmpgnq

(
∂µgmp∂

µgnq − 3∂µgmn∂
µgpq

)
− gmn∇2

4 gmn , (4.4)

where R4 and R6 are the Ricci scalars associated with the metrics on M4 and M6 respec-

tively, while ∇2
4 is the laplacian on M4. One now proceeds in two steps. First substi-

tute (4.4) in 1
2

∫
M10

vol10e
−2φR̂10 and perform the integration by parts (vold is the volume

form on Md):

−1

2

∫

M4

vol4

∫

M6

vol6e
−2φgmn∇2

4 gmn =
1

2

∫

M4

vol4

∫

M6

∂µ(vol6e
−2φgmn)∂µgmn . (4.5)

Secondly, pass to the 4d Einstein frame by introducing the 4d Weyl rescaled metric (no

rescaling is instead performed on the 6d metric):

gnew
µν =: e−2ϕgold

µν , (4.6)

where the 4d dilaton ϕ is defined as

e−2ϕ =:

∫

M6

vol6e
−2φ . (4.7)

Under this rescaling, Rold
4 = e−2ϕ(Rnew

4 − 6∇2
4ϕ− 6∂µϕ∂

µϕ), where on the rhs the indices

are raised with the new metric.

Putting everything together, the reduction of (2.1) results then in:

SNS =
1

2

∫

M4

vol4

(
R4 − 2∂µϕ∂

µϕ− 1

12
e−4ϕHµνρH

µνρ

)

− 1

8

∫

M4

vol4e
2ϕ

∫

M6

vol6e
−2φgmpgnq

(
∂µgmn∂

µgpq + ∂µbmn∂
µbpq

)

− 1

2

∫

M4

vol4e
2ϕ

∫

M6

vol6e
−2φ∇2

4 log
(
e−2φ√g6

)

−
∫

M4

vol4VNS , (4.8)
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where g6 ≡ det(gmn) and VNS is identified with the part of the reduced NSNS sector not

containing any 4d spacetime derivative:

VNS ≡ −e
4ϕ

2

∫

M6

vol6e
−2φ

(
R6 + 4∂mφ∂

mφ− 1

12
HmnpH

mnp

)
, (4.9)

and therefore represents the contribution of the NSNS sector to the 4d scalar potential.9

The first line of (4.8) already contains 4d fields only, and is compatible with 4d

N = 2 supergravity. In standard fluxless Calabi-Yau compactifications the four dimen-

sional B-field is usually dualized to an axion which, together with the 4d dilaton ϕ and

two further scalars from the RR sector, defines the bosonic part of the so called universal

hypermultiplet. However, as first observed in [8], in the presence of RR magnetic fluxes

the NS 2-form acquires mass terms and therefore cannot be dualized to a scalar. Anyway,

as shown in [32 – 34], (massive) antisymmetric 2-tensors can be included consistently in an

N = 2 supergravity action. We will have more to say about this in section 5.

The subsequent lines in (4.8) still need to be reformulated in terms of a truncated set

of modes of the fields gmn, bmn and φ. For this purpose, in the forthcoming subsections

first we translate these expressions in the language of generalized geometry, relating them

with the SU(3)× SU(3) structure data. Then we implement the expansion in terms of the

truncated set of modes introduced in subsection 3.3.

Before discussing the relation with SU(3)×SU(3) structures, let’s briefly recall how the

dimensional reduction proceeds when performed on Calabi-Yau manifolds in the absence

of background fluxes [1]. The Calabi-Yau metric and b-field deformations are expressed

in terms of harmonic forms, and this also corresponds to the Kaluza-Klein prescription

for massless 4d scalars. The second line of (4.8) can be reformulated as a σ-model whose

metric splits in the sum of the special Kähler metrics on the spaces of complex– and Kähler-

structure deformations [45]. This yields the kinetic terms for the scalars in the vector

multiplets as well as the kinetic terms for a subset of the scalars in the hypermultiplets.

The last two lines of (4.8) vanish in Calabi-Yau dimensional reductions. The line

involving ∇2
4 log

(
e−2φ√g6

)
vanishes thanks to the internal coordinate independence of this

last term: passing it out the integral over M6 and recalling (4.7), one is left with the integral

over M4 of a total derivative. The constancy of ∇2
4 log

√
g6 along the Calabi-Yau can be

seen as follows. Recall that
√
g6 depends on the 4d coordinates through the moduli va(x)

parameterizing the Kähler form J = vaωa ( {ωa(v)} is a basis of harmonic (1,1)–forms):

the relation is vol6 = 1
6J ∧ J ∧ J . Therefore one has10

∂µ log
√
g6 =

∂

∂va
(log

√
g6)∂µv

a = 3
ωa ∧ J ∧ J
J ∧ J ∧ J ∂µv

a = (ωayJ)∂µv
a . (4.10)

The statement then follows recalling that below eq. (3.29) we deduced ∂m(ωayJ) = 0.

VNS is zero due to the Ricci-flatness of Calabi-Yaus, as well as to the harmonicity of φ

and b. The absence of a scalar potential in the 4d effective action (there is no contribution

9A further contribution to the scalar potential is generated from the RR sector and will be derived in

the next section. The total potential of the effective theory will be V = VNS + VRR.
10Notice that even if the harmonic forms ωa depend on the moduli, as illustrated in [18, 19] on a Calabi-

Yau one has vb ∂
∂va ωb = 0, and therefore ∂

∂va J = ωa.
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from the RR sector either) is consistent with the fact that the dimensional reduction is

performed on a class of equivalent solutions of the 10d theory (with vanishing 4d cosmo-

logical constant), so that the geometrical moduli correspond to massless 4d scalars with no

preferred vev. This is in contrast with what expected for general SU(3) × SU(3) structure

off-shell reductions: as we will discuss in subsection 4.3, in this case a non-trivial scalar

potential is generated.

4.1 Scalar kinetic terms

The second line of (4.8) defines the kinetic terms for the internal metric and b-field fluc-

tuations along the 4d spacetime. This was already translated in the generalized geometry

formalism in [31], where we showed that

1

8
gmngpq(δgmpδgnq + δbmpδbnq) = −〈δχ−, δχ̄−〉

〈Φ−, Φ̄−〉
− 〈δχ+, δχ̄+〉

〈Φ+, Φ̄+〉
. (4.11)

In the following we add a comment on this formula. In [31] since the beginning we discarded

pure spinor deformations living in the vector representation of O(6,6), decomposing under

SU(3)×SU(3) in the ‘triplets’ (3,1)⊕ (3̄,1)⊕ (1,3)⊕ (1, 3̄). However, eq. (4.11) is correct

even when taking such variations δtrΦ± into account, because they are precisely the ones

which modify the compatible pair of generalized almost complex structures J+,J− while

leaving invariant the generalized metric G = −J+J− (and therefore the internal metric

and b-field, see subsection 3.1). Indeed, recalling the comment below eq. (3.6), the space of

compatible J+,J− at a point ofM6 is the 48-dimensional coset O(6,6)
U(3)×U(3) , while the space of

generalized metrics G is the 36-dimensional coset O(6,6)
O(6)×O(6) . The 48− 36 = 12-dimensional

space of transformations being in the first but not in the second coset is in correspondence

with the O(6,6) vectors [15].

This argument can be made more explicit as follows. Consider the pure spinor varia-

tions δtrΦ± in the SU(3)×SU(3) ‘triplets’, parameterized as in (3.16). Starting from (3.18),

we now evaluate the corresponding deformations of the generalized almost complex struc-

tures J+ and J−. Performing the computation in the bispinor picture via the same proce-

dure used in [31] to derive eq. (4.11) here above, we find that:

−(δtrJ+)J− = B
(

Im(δuyΩ1 + δvyΩ2)
m

n Im(δuyΩ1 − δvyΩ2)
mn

Im(δuyΩ1 − δvyΩ2)mn Im(δuyΩ1 + δvyΩ2)
n

m

)
B−1 = +J+(δtrJ−) ,

(4.12)

where Ω1 and Ω2 are the invariant (3, 0)-forms for the SU(3) structures associated with η1
+

and η2
+ respectively (see subsection A.2 of the appendix for our conventions). Therefore

we conclude that G = −J+J− is invariant under δtrΦ±.

As discussed in subsection 3.3, the requirement of dropping the pure spinor deforma-

tions δtrΦ± makes (4.11) coincide with the sum of two special Kähler metrics.

Recalling (3.8) and the definition of the 4d dilaton (4.7), we can also integrate (4.11)

over the compact M6, and write

e2ϕ

8

∫
vol6e

−2φgmpgnq
(
δgmnδgpq + δbmnδbpq

)
= −

∫
〈δχ−, δχ̄−〉∫
〈Φ−, Φ̄−〉

−
∫
〈δχ+, δχ̄+〉∫
〈Φ+, Φ̄+〉

. (4.13)
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In [31] we parameterized δχ± in terms of the finite set of modes surviving the truncation

as δχ− = χ−i δz
i and δχ+ = χ+

a δt
a, where zi and ta are special coordinates for M− and

M+ respectively. We then concluded that the second line of (4.8) can be rewritten as the

sum g−ī∂µz
i∂µz̄̄ + g+

ab̄
∂µt

a∂µt̄b̄, involving the special Kähler metrics g−ī and g+
ab̄

obtained

deriving the Kähler potentials (3.26).

4.2 Variations of
√
g6 and the dilaton

In this subsection we discuss the condition under which the variation of log(e−2φ√g6), as

induced by SU(3) × SU(3) structure deformations, is independent of the internal coordi-

nates. As observed above eq. (4.10), this guarantees vanishing of the third line in (4.8), in

analogy with the Calabi-Yau case.

Recalling the stated relation (3.8) between the dilaton φ and the pure spinor norm, we

immediately see that under a general pure spinor deformation (3.13) we have

δ log(e−2φ√g6) =
δ〈Φ±, Φ̄±〉
〈Φ±, Φ̄±〉

= 2Re(δκ) , (4.14)

where we call Re(δκ) the equal real parts of δκ+ and δκ−. Thus we need constantness

along M6 of the function Re(δκ) associated with pure spinor rescalings. For the truncated

set of modes, this is guaranteed by our assumption (3.28).

Notice from (3.8) that a priori the metric deformations also affect the dilaton, in such a

way that e−2φ√g6 is left invariant. However, it is more natural to consider the deformations

of φ and
√
g6 as independent. This can be achieved as follows. We start deriving the first

order variation of
√
g6 induced by δΦ± in (3.13). Recalling (3.6), and assuming here b = 0

for simplicity, we have that gmn = Gmn = −(J+J−)mn. Using (3.7) we obtain11,12

2 δ log
√
g6 ≡ gmnδgmn =

1

2

[
(δJ+)mn(J1 + J2)

mn + (δJ−)mn(J1 − J2)
mn
]
, (4.15)

so we see that in general both δJ+ and δJ− will contribute. Now we express δJ± employ-

ing (3.18): as discussed in the previous subsection, δtrJ± drop when computing variations of

the generalized metric G, so we are left with the deformations induced by δχ±. Performing

as usual the computation in the bispinor picture and recalling (3.15) we arrive at the result:

δ log
√
g6 = 4gmnRe(δχ− − δχ+)mn . (4.16)

Recalling (3.8), we can now prevent such a metric variation to modify the dilaton φ by pre-

scribing a simultaneous real rescaling of Φ± with δκ = 1
2δ log

√
g6. Any other independent

pure spinor rescaling (having Re(δκ) 6= 0) modifies φ without affecting the metric gmn.

All this can be illustrated considering strictly SU(3) structures. In this case J1 =

J2 ≡ J and I1 = I2 ≡ I, so that from (3.7) we have J+ =
(
0 −J−1

J 0

)
and J− =

(
−I 0
0 IT

)
.

11If b = 0 in G, then in general the variation δG will contain a small δb. However, at first order this

doesn’t enter in δGmn, which is then identified with δgmn.
12The supplementary term gmn[(δJ+) p

m J−pn+J+mp(δJ−)p
n] that should enter in (4.15) vanishes because

gnm(δJ+ − δtrJ+) p
m and (δJ− − δtrJ−)p

ngnm turn out to be symmetric tensors while J−pn and J+mp are

antisymmetric.
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From (4.15) we immediately see that δJ− does not contribute, and that

δ log
√
g6 =

1

2
(δJ+)mnJ

mn = (δJ)yJ . (4.17)

In particular, only the rescalings δJ = δλJ (where δλ is a function) contribute to (δJ)yJ .

Now we notice that this J-rescaling also implies a rescaling of Φ0
+, which in the SU(3)

structure case reads Φ0
+ = e−φe−iJ (recall (A.18) and (3.11)). Indeed, at first order we have

δe−iJ =
3

2
δλe−iJ +

1

4
δλ(−6 + 2iJ − J2 + iJ3) , (4.18)

where the second term in the rhs is in the (3̄,3) of SU(3)× SU(3). It is now immediate to

check that, thanks to the presence of the rescaling term in (4.18), it is consistent to keep the

pure spinor norm (3.8), viz. the dilaton, unmodified. Thus the condition Re(δκ) = const

in this case also requires δλ to be constant along M6. Choosing the basis of expansion

forms described in [18], we have 3δλ = (δJ)yJ = ωayJδv
a, and we recover the requirement

d(ωayJ) = 0 discussed in that paper (as seen below (3.29), this is satisfied for a Calabi-Yau).

4.3 Scalar potential

In the following first we obtain a formula expressing the Ricci curvature R6 of the compact

manifold (supplemented by terms involving Hmnp and ∂mφ) as a function of the pure

spinors Φ±. Then we apply this result to reformulate the NSNS contribution (4.9) to the

4d scalar potential. This allows us to make contact with an expression for the potential

obtained with purely 4d gauged supergravity methods in [37].

At the end of this subsection we will prove that under the assumption

〈dHΦ0
+,
→
γ mΦ̄0

+〉 + 〈dHΦ0
−,
→
γ mΦ̄0

−〉 = 0 , 〈dHΦ0
+, Φ̄

0
+
←
γ m〉 + 〈dHΦ̄0

−,Φ
0
−

←
γ m〉 = 0 ,

(4.19)

constraining a subset13 of the SU(3)×SU(3) triplets in dHΦ0
±, the following formula is valid:

R6 −
1

12
HmnpH

mnp + 4∂mφ∂
mφ− 2e2φ∇2

6 e
−2φ = (4.20)

=−4
〈dHΦ0

+, ∗λ(dH Φ̄0
+)〉

i〈Φ±, Φ̄±〉
−4

〈dHΦ0
−, ∗λ(dH Φ̄0

−)〉
i〈Φ±, Φ̄±〉

+16
∣∣∣
〈dHΦ0

+,Φ
0
−〉

i〈Φ±, Φ̄±〉
∣∣∣
2
+ 16

∣∣∣
〈dHΦ0

+, Φ̄
0
−〉

i〈Φ±, Φ̄±〉
∣∣∣
2
,

where ∇2
6 is the laplacian on M6 and dH = d−H∧, with H = Hfl + d(6)b purely internal.

This completes and generalizes an expression given in the context of SU(3) structures in

footnote 2 of ref. [18], referring to results in [50].

We remark that (4.20) is symmetric under the exchange Φ0
+ ↔ Φ0

−, in agreement with

the formulation of mirror symmetry in the context of generalized structures [51, 23, 24].

Indeed we have 〈dHΦ0
+,Φ

0
−〉 = 〈Φ0

+, dHΦ0
−〉, thanks to the fact that Φ0

+,Φ
0
− satisfy (3.3).

Furthermore, notice that while the last two terms in the rhs of (4.20) are positive

definite, the first two are instead negative definite: in fact for any complex polyform

13Here we don’t strictly need the condition projecting out all the SU(3)×SU(3) triplets in dHΦ0
±, which

would read: 〈dHΦ0
+, ΓΛΦ̄0

+〉 = 0 = 〈dHΦ0
−, ΓΛΦ̄0

−〉 , with ΓΛ = dym∧ or ι∂m (the analogous relations

containing Φ0
± at the place of Φ̄0

± are automatically satisfied).
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C =
∑

k Ck, one has 〈C, ∗λ(C̄)〉 = vol6
∑

k CkyC̄k. The last two terms of (4.20) vanish when

at least one of the two pure spinors satisfies the integrability condition dHΦ0 = (ιv +ζ∧)Φ0,

where v is a vector and ζ a 1-form. Finally, the rhs of (4.20) vanishes identically when the

pure spinors satisfy the ‘generalized Calabi-Yau metric’ condition dHΦ0
± = 0 introduced

in [21].14 Then for these geometries we have an expression for the curvature R6 in terms

of ∂mφ and Hmnp (playing the role of torsion).

The rhs of (4.20) can also be expressed in terms of the SU(3) × SU(3) torsion classes

introduced in [24, 27]. We refer to the parameterization provided by eqs. (6.14), (6.15)

of ref. [27] (even if written for SU(3) structure pure spinors, that parameterization also

applies to the general SU(3) × SU(3) structure case). Using (A.21), (A.22) we get:

rhs of (4.20)=8
(
|W 30|2+|W 03|2

)
−16

(
|W 21|2+|W 12|2+|W 11|2+|W 22|2+|W 10|2+|W 01|2

)
,

(4.21)

where expressions like for instance |W 12|2 and |W 10|2 mean W 12
i1j2

W
12 i1j2 and W 10

j2
W

10 j2

respectively. As in subsection 3.2, the indices ı̄1, i1 are (anti)holomorphic with respect to

the almost complex structure I1, and analogously for ̄2, j2 w.r.t. I2. Our constraint (4.19),

which in terms of torsion classes reads W 01
ı̄1 +W 31

ı̄1 = 0 and W 10
j2

−W
20
j2 = 0, has been used

to eliminate W 31 and W 20.

Now we multiply eq. (4.20) with e−2φvol6 and integrate over M6, getting in this way

a geometric expression for the NSNS contribution (4.9) to the 4d scalar potential:

VNS =
e4ϕ

4

∫ [
〈 dHflΦ+, ∗b(dHflΦ̄+) 〉 + 〈 dHflΦ−, ∗b(dHflΦ̄−) 〉

]

− e4ϕ

∫ ∣∣〈dHflΦ+,Φ−〉
∣∣2 +

∣∣〈dHflΦ+, Φ̄−〉
∣∣2

i〈Φ±, Φ̄±〉
. (4.22)

Eq. (3.8) has been used, as well as (3.12) and the definition (3.30) of the ∗b operator.

Starting from (4.22), it is possible to reformulate VNS in terms of the 4d degrees of

freedom by substituting the expansions (3.24) for Φ± and exploiting the assumed properties

of the basis polyforms. For instance, recalling (3.35), (3.31):

e2ϕ

∫
〈dHflΦ+, ∗b(dHflΦ̄+)〉 = −8eK+XA(QT M̃Q)ABX̄

B , (4.23)

where we have also used the fact that e−K± = 8e−2ϕ (see (3.8), (3.26) and (4.7)). To

evaluate the second line of (4.22), we need requirement (3.27), implying:

〈ΣI
−,Φ−〉

〈Φ−, Φ̄−〉
=

∫
〈ΣI
−,Φ−〉∫

〈Φ−, Φ̄−〉
= −ieK−ZI . (4.24)

The resulting expression for VNS is symplectically invariant, and reads:

VNS = − 2e2ϕ
[
eK+XA(QT M̃Q)ABX̄

B + eK−ZI(Q̃T ÑQ̃)IJZ̄
J
]

− 8e2ϕeK++K−Z̄I(S−Q)IA(XAX̄B + X̄AXB)(QT S−)BJZ
J , (4.25)

14This condition does not coincide with the notion of generalized Calabi-Yau manifold defined in [20], see

e.g. [43] (section 4) for a comparison.
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where we recall that Q̃ is given by (3.37) and that Ñ and M̃ are negative definite. This is

precisely the same expression obtained in [37] by means of 4d gauged supergravity tech-

niques, starting from the 4d effective action associated with Calabi-Yau compactifications.

Finally, we remark that the value of expression (4.20) in a vacuum is also related to the

external spacetime Ricci curvature R4. Indeed the 10d dilaton equation (in string frame

and in the absence of localized sources) for a 4d×6d background preserving maximal 4d

symmetry takes the form

−R4 = R6 −
1

12
HmnpH

mnp + 4∂mφ∂
mφ− 2e2φ∇ 2

6 e
−2φ , (4.26)

with no contributions from the RR sector. Furthermore, acting on eq. (4.26) with∫
M6

e−2φvol6 and rescaling the 4d metric as in (4.6), we obtain R4 = 2VNS. On the other

hand, from the trace of the 4d Einstein equation evaluated on a maximally symmetric

vacuum, in general one has R4 = 4V. Since the total potential of the reduced theory is

V = VNS + VRR, then we can conclude that in a vacuum 2VRR = −VNS.

Proof of relation (4.20). In the remainder of this section we give an account of the

main computational steps proving eq. (4.20). We parameterize ||η1
±|| = |a|, ||η2

±|| = |b|
(this last should not be confused with the internal NS 2-form, also called b). Then (3.11)

says |ab| = e−φ.

We start without imposing any constraint on the SU(3)×SU(3) triplets of dHΦ0
±. The

rhs of (4.20) is evaluated using (A.22), (A.23) for the Mukai pairing as well as

1

4
��dHΦ0

± = (�D − 1
4�H)η1

+η
2†
± ± (Dm − 1

4Hm)η1
+η

2†
± γ

m

±η1
+

[
(�D + 1

4�H)η2
±

]†
+ γmη1

+

[
(Dm + 1

4Hm)η2
±

]†
, (4.27)

where �D = γnDn , �H = 1
6Hmnpγ

mnp and Hm = 1
2Hmnpγ

np. Eq. (4.27) is directly derived

(also recalling (3.9)) from the expressions for �dΦ0
± and ���

H ∧ Φ0
± given e.g. in appendix A

of ref. [27]. For instance we obtain

16
∣∣∣
〈dHΦ0

+,Φ
0
−〉

i〈Φ±, Φ̄±〉
∣∣∣
2

= 4|a|−4
[
(�D − 1

4�H)η1
+

]†
η1
−η

1†
− (�D − 1

4�H)η1
+

= 4|a|−2
∣∣(�D − 1

4�H)η1
+

∣∣2 − 2|a|−4
∣∣η1†

+ γ
m(�D − 1

4�H)η1
+

∣∣2 , (4.28)

where for the second equality we used identity (A.12) in order to reexpress |a|−2η1
−η

1†
− . The

computation of the terms in the rhs of (4.20) containing ∗λ is slightly more involved, but

employs the same technique. For the image of ∗λ under the Clifford map we use (A.21).

Resumming all the terms and taking a few cancellations into account we obtain:

−4
〈dHΦ0

+, ∗λ(dH Φ̄0
+)〉

i〈Φ±, Φ̄±〉
− 4

〈dHΦ0
−, ∗λ(dH Φ̄0

−)〉
i〈Φ±, Φ̄±〉

+ 16
∣∣∣
〈dHΦ0

+,Φ
0
−〉

i〈Φ±, Φ̄±〉
∣∣∣
2
+ 16

∣∣∣
〈dHΦ0

+, Φ̄
0
−〉

i〈Φ±, Φ̄±〉
∣∣∣
2
=

= |a|−2
[
2Dmη

1†
+ γ

mnDnη
1
+ +

1

8
η1†
+ (HmH

m − �H�H)η1
+ − 1

12
Dm(η1†

+ γ
mnpqη1

+)Hnpq

]

−4|a|−2Re
[
η1†
+ γ

m(�D − 1
4�H)η1

+

]
∂m log |b| − 2|a|−4

∣∣η1†
+ γ

m(�D − 1
4�H)η1

+

∣∣2

+ η1
+ → η2

+ , |a| ↔ |b| , H → −H (4.29)
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where the last line denotes the repetition of the two preceding lines performing the pre-

scribed transformations.

Now we consider our requirement (4.19) on the SU(3) × SU(3) triplets of dHΦ0
±: this

can be translated as:15

|a|−2η1†
+ γ

m(�D − 1
4�H)η1

+ + 2Pm
1 n∂

n log |b| = 0 , (4.30)

together with the analogous relation obtained implementing 1 → 2 , |a| ↔ |b| , H → −H.

P1 is the holomorphic projector associated with the almost complex structure I1.

Now, constraint (4.30) implies that the two terms in (4.29) containing �D− 1
4�H cancel

each other. Then using the following relations:

[Dm,Dn]η+ =
1

4
Rmnpqγ

pqη+ ⇒ Dmη
†
+γ

mnDnη+ =Dm

(
η†+γ

mnDnη+

)
+

1

4
||η+||2R6

HmH
m − �H�H = −1

3
HmnpH

mnp

dH = 0 ⇔ D[mHnpq] = 0 , (4.31)

we rewrite:

rhs of (4.29) =R6 −
1

12
HmnpH

mnp + 2|a|−2Dm

(
η1†
+ γ

mnDnη
1
+ − 1

24
Hnpqη

1†
+ γ

mnpqη1
+

)

+ η1
+ → η2

+ , |a| → |b| , H → −H , (4.32)

where only the term involving |a|−2 needs to be repeated with the prescribed substitutions.

Now we observe that the real part of constraint (4.30) can be written as:

|a|−2

[
Re
(
η1†
+ γ

mnDnη
1
+

)
− 1

24
Hnpqη

1†
+ γ

mnpqη1
+

]
+ ∂m log |ab| = 0 . (4.33)

Noticing that Dm[Im(η†+γ
mnDnη+)] vanishes identically, and recalling |ab| = e−φ, we can

use this equation, together with the analogous one obtained performing 1 → 2 , |a| ↔
|b| , H → −H, to see that

last two terms in (4.32) = −4∂mφ∂
mφ+ 4∇ 2

6 φ ≡ 4∂mφ∂
mφ− 2e2φ∇ 2

6 e
−2φ . (4.34)

This proves eq. (4.20).

5. Reduction of the RR sector

In this section we reduce the RR sector. We will focus on type IIA, but the procedure we

describe can equally well be applied to type IIB.

We wish to reduce the RR democratic pseudo-action (2.8), also implementing the self-

duality constraint (2.5) in an appropriate way (a direct substitution of (2.5) in (2.8) results

indeed in a vanishing action). In principle we could follow a procedure similar to the one

15One can check that in the notation of ref. [27] (section A.4), this constraint corresponds to T 1
ı̄1 +

∂ı̄1 log |b| = 0 together with T 2
ı̄2

+ ∂ı̄2 log |a| = 0.
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adopted in [7], and subsequently in [8, 12], to reduce the type IIB action taking into account

the self-duality of the RR 5-form F5. In [7], first the electric and magnetic 4d gauge field

strengths descending from the expansion of F5 on the Calabi-Yau harmonic 3-forms are

regarded as independent and kept in the 4d action. Then the addition of a suitable Lagrange

multiplier term makes the equations of motion for the magnetic field strengths precisely

correspond to the self-duality constraint. Integrating out the magnetic field strengths

provides thus an action with electric fields only and the self-duality constraints correctly

implemented. In our context, the generalization of this procedure would require to keep in

the 4d action forms of any degree16 (from 0 to 4) descending from the RR field expansion

on the internal basis (3.22), and then to integrate out a subset of these forms.

However in our case this direct approach to the reduction of the action turns out to

be quite involved due to the large amount of fields and constraints, and indeed we find it

more efficient to proceed along the following alternative path.

First we reduce the self-duality constraint for the democratic RR field, as well as its

EoM/Bianchi identities. From the reduced Bianchi identities we isolate and solve a set of 4d

Bianchi identities, defining in this way the fundamental dynamical fields of the 4d effective

theory. Using the relations obtained from the reduction of the 10d self-duality condition,

the remaining 4d equations are interpreted as EoM associated with the identified dynamical

degrees of freedom. The last step consists in the reconstruction of the four dimensional

action leading precisely to such EoM.

We will work with the so-called G-basis for the RR field, defined via [39]:

F̂ ≡ eB̂Ĝ . (5.1)

In this basis, the self-duality constraints (2.5) and the Bianchi identities in (2.6) read

respectively:

eB̂Ĝ = λ ∗
(
eB̂Ĝ

)
, (5.2)

(
d−Hfl∧

)
Ĝ = 0 , (5.3)

where as in the previous section we used the decomposition Ĥ = Hfl +dB̂, with B̂ = B+b.

We recall that, due to the self-duality, the RR EoM are equivalent to the Bianchi identities.

5.1 Reduction of the RR self-duality constraint

We start expanding the RR field Ĝ on the internal basis polyforms (3.22). Recalling (2.4)

and (5.1), this expansion naturally leads to forms of any degree in the 4d spacetime M4:

2−1/2Ĝ = (GA
0 +GA

2 +GA
4 )ωA−(G̃0A+G̃2A+G̃4A)ω̃A+(GI

1+GI
3)αI−(G̃1I +G̃3I)β

I , (5.4)

where Gp denotes a p-form on M4 depending on the xµ coordinates only. The 2−1/2 factor is

introduced just for later convenience (concerning the relative normalization of the reduced

RR and NSNS sectors). We also introduce the following auxiliary expansion:

2−1/2eB̂Ĝ = eb
(
KAωA − K̃Aω̃

A + LIαI − L̃Iβ
I
)
, (5.5)

16It would be interesting to relate this with the tensor hierarchy proposed in [52].
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so that (the indices are understood and B is along M4): L = G1 + (G3 + B ∧ G1) ,

K = G0 + (G2 +BG0) + (G4 +B ∧G2 + 1
2B ∧BG0), and analogously for K̃ and L̃.

We now reduce the self-duality constraint (5.2). Substituting (5.5), this can be

rewritten as:

KAωA−K̃Aω̃
A+LIαI−L̃Iβ

I = −∗λ(KA)∗bωA+∗λ(K̃A)∗b ω̃
A−∗λ(LI)∗bαI +∗λ(L̃I)∗bβ

I

(5.6)

where (A.6) has been used, as well as the definition (3.30) of the 6d operator ∗b . Taking

the Mukai pairings with the basis forms, integrating over M6 and using the results for the

action of ∗b recalled in subsection 3.3, from (5.6) we get the 4d relations:

K̃A = −ImNAB ∗ λ(KB) + ReNABK
B (5.7)

L̃I = −ImMIJ ∗ λ(LJ) + ReMIJL
J . (5.8)

In order to keep the notation of the forthcoming expressions as compact as possible, we use

the symplectic notation introduced in subsection 3.3, and we define the symplectic vectors

GA
k =

(
GA

k

G̃kA

)
for k = 0, 2, 4 and GI

k =

(
GI

k

G̃kI

)
for k = 1, 3 . (5.9)

Then separating the different form degrees and rescaling the 4d metric as done in (4.6)

for the NSNS sector, (5.7) yields the following relations among the 4d fields:

G̃2A +BG̃0A = ImNAB ∗
(
GB

2 +BGB
0

)
+ReNAB

(
GB

2 +BGB
0

)
, (5.10)

GA
4 +B ∧GA

2 +
1

2
B ∧BGA

0 = e4ϕNA
BG

B
0 ∗ 1 , (5.11)

while from (5.8) we obtain:

GI
3 +B ∧GI

1 = −e2ϕMI
J ∗GJ

1 . (5.12)

Eqs. (5.10)–(5.12) represent the 4d remains of the 10d RR self-duality condition (5.2).

5.2 Reduction of the equations of motion / Bianchi identities

We now pass to reduce eq.(5.3). This will provide a set of Bianchi identities for the 4d fields

as well as the 4d EoM, once the relations (5.10)–(5.12) imposed by the reduced 10d self-

duality will be used to eliminate the redundant 4d fields. Starting from the expansion (5.4)

for Ĝ, we use the ansatz (3.35) to evaluate dHfl on the internal basis of forms,17 and

then separate the different components by acting with
∫
M6

〈Σ±, · 〉 . The following set of

four-dimensional equations is obtained (recall that Q̃ is related to Q as in (3.37)):

QI
AG

A
0 = 0 (5.13)

dGA
0 − Q̃A

IG
I
1 = 0 (5.14)

17Due to their moduli dependence, the basis forms are in general not closed even with respect to the 4d

exterior derivative. However, recall that in subsection 3.3 we assumed that their derivatives with respect

to the moduli vanish in the integrated Mukai pairing.
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dGI
1 + QI

AG
A
2 = 0 (5.15)

dGA
2 − Q̃A

IG
I
3 = 0 (5.16)

dGI
3 + QI

AG
A
4 = 0 . (5.17)

We immediately rewrite eq. (5.17): using (5.11) and (5.12) to eliminate GA
4 and GI

3, also

employing (5.13), (5.15) to simplify the expression, we obtain

−d
(
e2ϕMI

J ∗GJ

1

)
− dB ∧GI

1 + e4ϕ(QN)I
AG

A
0 ∗ 1 = 0 . (5.18)

We also need to reduce the ten dimensional EoM (2.9) for the NS 2-form B̂, which

receives contributions from both the NSNS and the RR sectors. This is an 8-form equation,

and we consider just its piece with 2 legs along M4 and six legs along M6. Taking the

integral over M6, using the expansions in subsection 5.1 and recalling (3.31), (3.32), we

arrive at the 4d equation:

1

2
d(e−4ϕ ∗ dB) + GA

0 G̃2A − G̃0AG
A
2 + G̃1I ∧GI

1 = 0 , (5.19)

where the 4d metric has been Weyl rescaled as in (4.6). This corresponds to the EoM for

the 2-form B in the reduced 4d theory.

5.3 pA
I = 0 = qIA case. SU(3) structure

We pursue the analysis by considering first the simpler case in which pA
I = 0 = qIA,

i.e. QIA = 0 (recall (3.36)). As we will discuss below, this is particularly relevant for

dimensional reductions on SU(3) structure manifolds.

We start by identifying and solving a set of Bianchi identities in the system of equa-

tions (5.13)–(5.17). From the components of (5.14) with upper A-indices we see that

GA
0 = const := mA

RR (these parameters are associated with RR fluxes). Then (5.13)

are just constraints among constants: mI
Am

A
RR = 0 = eIAm

A
RR. The upper components

of (5.16) are solved by GA
2 = dAA

1 , defining the (electric) gauge potentials of the 4d theory.

Then (5.15) are solved by GI
1 = dξI −mI

AA
A
1 and G̃1I = dξ̃I − eIAA

A
1 , where ξI and ξ̃I are

scalar fields. Finally, using also the quadratic constraint eIAm
I
B −mI

AeIB = 0 contained

in (3.38), from the lower components of (5.14) we find that G̃0A = eRRA − ξIeIA + ξ̃Im
I
A,

where eRRA are constant RR flux parameters.

At this point the only equations we still have to deal with are eq. (5.17) and the

lower components of (5.16). Employing the relations descending from the RR self-duality

constraint, these will now be interpreted as EoM for the fields ξ̃I , ξ
I and AA

1 . Eq. (5.17)

has already been treated along these lines, yielding eq. (5.18), which we take as the EoM

for the scalars ξI , ξ̃I . Concerning the EoM for AA
1 , we use (5.10) and (5.12) to eliminate

G̃2A, G
I
3 in the lower components of (5.16), and we get:

d
[
ImNAB ∗ FB + ReNABF

B
]
− G̃0AdB − e2ϕ(QT M̃)AI ∗GI

1 = 0 , (5.20)

where we introduced the modified field strengths FA containing the 2-form B:

FA := GA
2 +GA

0 B = dAA
1 +mA

RRB . (5.21)
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One can now check that precisely the equations of motion just obtained, together with

the EoM for B given in (5.19), can be derived from the 4d action:18

S
(4)
RR=

∫

M4

[
1

2
ImNABF

A ∧ ∗FB +
1

2
ReNABF

A ∧ FB +
e2ϕ

2
M̃IJDξ

I ∧ ∗DξJ

+
1

2
dB ∧

[
ξIS−IJDξ

J +
(
2eRRA − ξIeIA + ξ̃Im

I
A

)
AA

1

]
− 1

2
mA

RReRRAB ∧B

− VRR ∗ 1

]
, (5.22)

where ξI =
(ξI

ξ̃I

)
, and we have introduced the covariant derivatives

DξI ≡ GI
1 = dξI −mI

AA
A
1 , Dξ̃I ≡ G̃1I = dξ̃I − eIAA

A
1 . (5.23)

Furthermore we defined:

VRR = −e
4ϕ

2
GA

0 ÑABG
B
0 , (5.24)

corresponding to the non-negative contribution of the RR sector to the scalar potential of

the reduced theory.19

Since it yields the correct reduced EoM, we interpret the action (5.22) as the one for

the reduced type IIA RR sector. To check that S
(4)
RR reproduces the EoM written above, one

needs the consistency constraints (3.38) as well as the condition mI
Am

A
RR = 0 = eIAm

A
RR.

As mentioned above, the present setting with pA
I = 0 = qIA is relevant for SU(3)

structure compactifications, once the specific basis of forms (of pure degree) defined e.g.

in [15, 18] is adopted. In this basis the parameters eIa,m
I
a, a = 1, . . . b+, are ‘geometric

charges’, while eI0,m
I
0 are associated with the NS flux Hfl. Indeed, the action (5.22), which

has the features of an N = 2 gauged supergravity, is in agreement with all the previous

studies of N = 2 type IIA compactifications on SU(3) structures [11, 13, 15, 17 – 19]. In

particular, the Killing prepotentials describing the general gauging were found in [15] via

a reduction of the gravitino susy transformations.

It can be useful to see how several particular cases already described in the literature

can be recovered. Let’s take mA
RR = 0 first. In this case the 2-form B can be dualized to

a scalar a. The terms in the action (5.22) containing dB, together with the kinetic term

−1
4

∫
e−4ϕdB ∧ ∗dB coming from the NSNS sector (see eq. (4.8)), are then replaced by:

Sdual =

∫

M4

−e
4ϕ

4

(
Da− ξIS−IJDξ

J
)
∧ ∗
(
Da− ξIS−IJDξ

J
)
, (5.25)

where

Da = da−
(
2eRRA − ξIeIA + ξ̃Im

I
A

)
AA

1 . (5.26)

18The term 1
2
d(e−4ϕ ∗ dB) in (5.19) is indeed derived from the piece of the 4d action associated with the

reduction of the NSNS sector, see eq. (4.8). This also fixes the overall normalization of S
(4)
RR.

19Notice that (5.24) contains a term − e4ϕ

2

`
mRR

eRR

´T eN
`

mRR

eRR

´
which does not depend on the RR scalars ξI , ξ̃I

and indeed does not contribute to their EoM. We have added it as the natural completion of the expression

for VRR directly reconstructed from these EoM. The correctness of (5.24) can also be verified studying the

reduced Einstein equations.
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The term (5.25) contributes to define a hypermultiplet quaternionic σ-model analogous

to the one featured by the standard N = 2 effective action derived from Calabi-Yau di-

mensional reductions [53]. More specifically, the (RR sector of the) N = 2 supergravity

obtained from proper Calabi-Yau compactifications with no fluxes [1] is recovered by set-

ting all the charges eIA,m
I
A, eRRA (as well as mRR) to zero. This is consistent with the fact

that all the basis forms (3.22) are then closed. Allowing for non-vanishing eI0,m
I
0 yields

the Calabi-Yau effective action in the presence of NS fluxes described in [8].20

Adopting a four dimensional approach, the N = 2 supergravity containing eRRA, eIA

and mI
A was obtained in [13] by performing a gauging of the Calabi-Yau effective action.

The Killing vectors parameterizing the quaternionic isometries that are gauged are

kA =
(
2eRRA − ξIeIA + ξ̃Im

I
A

)
∂a +mI

A∂ξI + eIA∂ξ̃I
, (5.27)

and the usual differentials dξI , dξ̃I , da are replaced by the covariant deriva-

tives (5.23), (5.26), coupling the scalars to the gauge vectors AA
1 .

Furthermore, taking just e0A 6= 0, we find agreement with the results of [11] for type

IIA reductions on half-flat manifolds (the parameter e00 being associated with an NS flux).

Finally, let’s consider nonvanishing mA
RR. These parameters generate some couplings

for the NS 2-form B, including a mass term: then B cannot be dualized to an axion [8, 15].

If mI
A = 0 = eIA, eq. (5.22) precisely reproduces the RR part of the action derived in [8]

for Calabi-Yau compactifications of type IIA with RR fluxes.

5.4 General case

Let’s consider a general charge matrix Q as given in (3.36). An N = 2 lagrangian including

this same set of charges was obtained in [37] using purely 4d supergravity techniques

and building on results in [13, 33, 34]. Having the N = 2 effective theory arising from

Calabi-Yau compactifications as a starting point, the authors of [37] first deformed it by

implementing a standard electric gauging of the quaternionic isometries, and subsequently

performed a dualization of a subset of the RR axions to antisymmetric 2-tensors in order

to include the magnetic charges.

In section 4 we found consistency between this procedure and the dimensional reduction

of the NSNS sector, obtaining in particular eq.(4.25) for the NSNS scalar potential. Here we

approach the same question for the RR sector. As in the previous subsection, we construct

a 4d action via the analysis of the reduced RR EoM/Bianchi identities. A set of 2-form

potentials, beside the vector and scalar fields, will emerge directly from the analysis of the

selected 4d Bianchi identities. The outcome of the analysis is summarized in table 1.

Even if for a general Q all the equations (5.13)–(5.17) are symplectically covariant,

we will anyway break this symmetry in order to establish a set of EoM associated with a

4d action written in terms of electric vectors only. For this task we introduce appropriate

projectors that we will apply to eqs. (5.13)–(5.17). In the following computations, several

technical steps are close to the ones employed in [37] for the dualization of the RR axions

to antisymmetric 2-tensors.

20With respect to [8], we have a sign difference in the definition of the RR scalars ξ̃.
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Equation yields: Equation yields:

(5.13) constraints among charges (5.16) Bianchi for GA
2 → def.AA

1

(5.14) expression for GA
0 EoM for AA

1

(5.15) Bianchi for ĜI
1 → def. ξ̂ I (5.17) Bianchi for Ǧ3A → def. Č2A

EoM for Č2A (rewr. as (5.18)) EoM for ξ̂ I

Table 1: Analysis of the reduced RR equations for a general charge matrix Q.

We start splitting the charge matrix Q in the following (2b−+2)×(b++1) submatrices:

U I
A := QI

A =

(
mI

A

eIA

)
, V IA := QIA =

(
qIA

p A
I

)
. (5.28)

With respect to the gauge vectors with upper indices AA
1 that we are going to define below,

the elements of U are electric charges, while V contains magnetic charges.

As in [37], we adopt the working assumptions b+ ≤ b−, and that the matrix U has

maximal rank b+ + 1. Then we introduce the matrix ŨA
I
, defined through:

ŨA
IU

I
B = δA

B , U I
AŨ

A
J = (P 6=0)

I
J , (5.29)

P 6=0 being the projector on the subspace corresponding to the non-vanishing minor of U I
A.

We also define the orthogonal projector (P0)
I
J
≡ δI

J
− (P 6=0)

I
J
.

An identity we will need is:

V = V UT ŨT = UV T ŨT , (5.30)

which is obtained recalling the first of (5.29) and then the first of (3.38). Notice that

(ŨV )AB is then symmetric.

Bianchi identities and fundamental 4d fields. With respect to the analysis of sub-

section 5.3, the presence of the pA
I and qIA charges makes less trivial the identification and

the solution of a set of Bianchi identities for the fundamental 4d fields. For this purpose

we make use of the matrices defined here above. As we will see, a set 2-form degrees of

freedom will be required.

We start introducing a set of scalar fields. Define [37]:

ǦA
1 := ŨA

IG
I
1 , ĜI

1 := P0
I
JG

J

1 , (5.31)

so that

GI
1 = U I

AǦ
A
1 + ĜI

1 . (5.32)

We want to keep the ĜI
1, while we will deal with ǦA

1 in the next paragraph. We act with

P0 on eq. (5.15) and we observe that P0Q = 0 , due to the definition of P0 below eq. (5.29)

and to identity (5.30). Then we get

dĜI
1 = 0 ⇒ ĜI

1 = dξ̂ I , (5.33)
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with ξ̂ I being a set of real scalars satisfying (P 6=0)
I
J
ξ̂ J = 0 and corresponding therefore to

rank(P0) = 2(b− + 1) − (b+ + 1) degrees of freedom.

Recalling (5.32) and (3.38), eq. (5.14) can then be written as

dGA
0 − Q̃A

Idξ̂
I = 0 ⇒ GA

0 = cA + Q̃A
Iξ̂

I , (5.34)

with cA =
(mA

RR
eRRA

)
a vector of constant charges, associated with general RR background

fluxes. Again employing (3.38), eq. (5.13) translates in the following consistency condition

among the different parameters [37]:

QI
Ac

A = 0 . (5.35)

Next we define the b+ + 1 combinations

Ǧ3A := −(UT S−)AIG
I
3 . (5.36)

Multiplying eq. (5.17) by UT S− from the left, and recalling (3.38), we get

dǦ3A = 0 , (5.37)

which we choose to solve as

Ǧ3A = d
(
Č2A + ζAB

)
, (5.38)

where the 2-forms Č2A are new fields, B is the NS 2-form and ζA is a combination of the

scalars ξ̂ I to be specified below. The 2-forms Č2A will be dynamical fields of our eventual

4d action.

Let’s finally turn to gauge vectors. Here we choose to define fundamental vector

potentials with upper indices only, so we keep all the GA
2 and dualize all the G̃2A, breaking

in this way the symplectic structure for the 2-forms GA
2 . The components of (5.16) with

upper indices can be read as Bianchi identities for GA
2 , while the dualization of the lower

components will provide the EoM for the associated vector potentials. First we look at the

Bianchi identities, which read:

dGA
2 +

(
V T S−

)A
I
GI

3 = 0 . (5.39)

Using (5.30) and (5.36), we rewrite this as dGA
2 − (ŨV )ABǦ3B = 0. Taking (5.38) into

account, this last equation is solved introducing a set of vector potentials AA
1 :

GA
2 = dAA

1 + (ŨV )AB(Č2B + ζBB) . (5.40)

We now fix the ζA introduced in (5.38). We choose

ζA ≡ (UT S−)AIξ̂
I , (5.41)

in such a way that the b+ + 1 two-forms

FA := GA
2 +GA

0 B = dAA
1 + (ŨV )ABČ2B +mA

RRB (5.42)
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contain vectors and 2-form potentials only (to obtain this expression recall also (5.30)

and (5.34)). Thus the FA are a set of field strengths for the vector potentials AA
1 , modified

by the presence of the 2-forms B, ČA
2 , and generalize the field strengths (5.21) to the case

of nonvanishing V IA charges. These are the appropriate modified field strengths described

by the formalism of N = 2 supergravity with tensor multiplets21 [33 – 35, 37].

To summarize, the outcome of this paragraph is a set of fundamental degrees of freedom

ξ̂ I, Č2A and AA
1 , related to ĜI

1, Ǧ3A and GA
2 as in (5.33), (5.38) and (5.40). Furthermore

in (5.42) we defined the proper modified field strengths for AA
1 , and in (5.34) we expressed

GA
0 as a combination of scalars and charges. The charges have to satisfy conditions (5.35).

Equations of motion. We now establish the EoM associated with the identified funda-

mental 4d fields. For this purpose we study the projections of eqs. (5.13)–(5.17) which are

independent with respect to the ones considered in the above study of the Bianchi identities.

The EoM for the vector potentials AA
1 are obtained from the lower components of (5.16)

using the duality relation (5.10) to eliminate G̃2A, recalling expressions (5.36), (5.38) as

well as the definition of FA in (5.42), and noticing that G̃0A = eRRA + ζA. The result is:

d
(
ImNAB ∗ FB + ReNABF

B + Č2A − eRRAB
)

= 0 . (5.43)

Next we find an expression for the ǦA
1 defined in (5.31). Multiplying relation (5.12)

by UT S− from the left, substituting (5.32) in it and recalling (3.38), (5.36) as well as the

expressions for Ǧ3A, ĜI
1 and ζA obtained in the study of the Bianchi identities, we arrive at:

ǦA
1 = −∆−1AB

[
∗ dČ2B + ζB ∗ dB + e2ϕ(UT M̃)BI dξ̂

I
]
, (5.44)

where we introduced the symmetric matrix [37]:

∆AB := e2ϕ(UT ) I
A M̃IJ U

J

B . (5.45)

In order to get the EoM associated with Č2A, we start acting with Ũ from the left on

eq. (5.15) and exploiting (5.10) in order to eliminate G̃2A. After some steps involving the

expressions arising from the Bianchi identites, we obtain

dǦA
1 + dAA

1 + (ŨV )AB
[
ImNBC ∗ FC + ReNBCF

C + Č2B − eRRBB
]

= 0 , (5.46)

where ǦA
1 should be read as (5.44).

The EoM for the scalars ξ̂ I are obtained substituting (5.32) in (5.18) and lowering the

symplectic index with S−:

−d
[
e2ϕM̃IJ ∗ (dξ̂ J+UJ

AǦ
A
1 )
]
+dB∧ [(S−U)IAǦ

A
1 +(S−dξ̂)I]−e4ϕ(S−QN)IAG

A
0 ∗1=0 , (5.47)

21Notice that one could also express the Č2A by introducing a redundant set of 2b− + 2 two-forms CI
2 =` CI

2

C̃2I

´
and writing, in analogy with (5.36), Č2A = −(UT S−)AIC

I
2 = CI

2eIA − C̃2Im
I
A. Then, recalling (5.30),

eq. (5.42) would become F A
2 = dAA

1 + CI
2pA

I − C̃2IqIA + mA
RRB. However the only propagating degrees of

freedom would be just the combinations of CI
2 and C̃2I associated with Č2A [22, 37]. Analogously, as in

subsection 5.3 we could introduce a symplectic vector of 2b− + 2 scalars ξI =
`ξI

ξ̃I

´
such that bξ I = P0

I
Jξ

J .

Then the result of (5.34) would read: GA
0 = mA

RR+ξIpA
I − ξ̃Iq

IA and G̃0A = eRRA−ξIeIA+ ξ̃Im
I
A. However,

in these expressions the only relevant combinations of the ξI correspond to the bξ I.
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where again expression (5.44) for ǦA
1 should be substituted. Once this is done,22 the piece

of (5.47) associated with a kinetic term for the ξ̂ I reads −d
(
∆̃IJ ∗ dξ̂ J

)
, with [37]:

∆̃IJ = e2ϕ
(
M̃ − e2ϕM̃U∆−1UT M̃

)
IJ
. (5.48)

Finally, we rewrite the EoM for the four dimensional B-field given in (5.19) substituting

the expressions for the fundamental 4d fields. After some steps we arrive at:

1

2
d(e−4ϕ ∗ dB)+mA

RR

(
ImNAB ∗ FB+ReNABF

B
)
−eRRAF

A− 1

2
dξ̂ IS−IJdξ̂

J+d(ζAǦ
A
1 )=0 .

(5.49)

4d action for the reduced RR sector. We can now reconstruct the action yielding

the EoM (5.43), (5.46), (5.47) and (5.49), respectively associated with the fields AA
1 , Č2A,

ξ̂ I and B (for this last remind footnote 18). We find:

S
(4)
RR=

∫

M4

{
1

2
ImNABF

A ∧ ∗FB +
1

2
ReNABF

A ∧ FB +
1

2
∆̃IJdξ̂

I ∧ ∗dξ̂ J

+
1

2
∆−1AB(dČ2A + ζAdB) ∧ ∗(dČ2B + ζBdB)

+ (dČ2A + ζAdB) ∧ (e2ϕ∆−1UT M̃)AIdξ̂
I +

1

2
dB ∧ ξ̂ I S−IJdξ̂

J

+(Č2A−eRRAB) ∧
[
dAA

1 +
1

2
(ŨV )ABČ2B +

1

2
mA

RRB

]
−VRR ∗ 1

}
. (5.50)

In order to derive the EoM, constraint (5.35) (written in the form UmRR + V eRR = 0)

should be recalled. The RR contribution to the 4d scalar potential is defined as in (5.24):

VRR = −e
4ϕ

2
GA

0 ÑABG
B
0 , (5.51)

but in the present general case expression (5.34) for GA
0 should be used. Using (3.31),

eq. (5.51) can be derived from the geometric formula

VRR =
e4ϕ

2

∫

M6

〈G, ∗bG〉 , (5.52)

where G := GA
0 ωA − G̃0Aω̃

A corresponds to the purely internal part of the RR field Ĝ,

expanded as in (5.4). This is a non-negative expression.

Notice that VRR effectively vanishes when integrating out the subset of the scalars ξ̂ I

entering in the potential [37]: indeed from the ξ̂ I-EoM (5.47) evaluated in a vacuum one

gets the condition GA
0 = 0.

The dimensionally reduced action (5.50) coincides with the one found in [37] using

purely four dimensional N = 2 supergravity techniques. It contains topological as well as

mass terms for the 2-forms B and Č2A, with mass matrix:

M2 = −
(

mT
RRImNmRR mT

RRImN ŨV

(ŨV )T ImNmRR (ŨV )T ImN ŨV

)
. (5.53)

22Taking into account the explicit expression for ǦA
1 , one can see that the b+ + 1 linear combinations

of the equations (5.47) obtained via multiplication by (UT ) I
A vanish identically, as it should be: we have

already exploited these combinations to write (5.37).
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6. Discussion

Joining the results for the reduced NSNS and RR sectors, derived in sections 4 and 5 re-

spectively, we get the complete bosonic action associated with N = 2 flux compactifications

of type IIA supergravity on SU(3) × SU(3) structures.

This N = 2 supergravity involves massive tensor multiplets, and is in agreement with

the one that ref. [37] obtained starting from the Calabi-Yau 4d effective action, gauging

the Heisenberg algebra of quaternionic isometries and then dualizing a set of axions in

order to introduce the magnetic charges. In our approach to the reduction of the RR

sector we didn’t need to perform any a posteriori dualization of scalars: reducing the

RR EoM/Bianchi identities we identified and solved a set of 4d Bianchi identities already

encoding the appropriate degrees of freedom.

The application of the generalized geometry formalism allowed to derive a geometric

formula for the full 4d scalar potential V = VNS + VRR, given by eqs. (4.22) and (5.52).

Expanding the pure spinors as well as the internal RR field strengths on the basis polyforms,

and integrating over the compact manifold, we recover the symplectically invariant scalar

potential of [37]. The NSNS contribution to the potential is mirror symmetric under the

exchange Φ+ ↔ Φ−, while we expect the type IIB RR contribution still read as (5.52),

modulo the substitution Geven → Godd.

Our expression for the potential is also relevant when considering N = 2 → N = 1

truncations, for instance induced by orientifold planes. Indeed one can get the N = 1

scalar potential via a reformulation of the N = 2 potential in terms of the appropriate

N = 1 variables (in the context of generalized geometry these were first derived in [54]), in

the same way as the N = 1 superpotential and D-terms can be obtained from the Killing

prepotentials defining the N = 2 gaugings [15, 22, 31]. It should also be possible to derive

the expression for the N = 1 scalar potential including the effects of a non-trivial warp

factor, along the lines of [36]. Indeed our expression (4.20), reformulating the internal

NSNS sector in terms of the generalized geometry data, can in principle be extended to

take the warping into account.

Concerning the basis forms defining the truncation, it would be interesting to start

from some well-characterized class of internal manifolds with SU(3)× SU(3) structure and

exhibit an explicit construction. In particular, it would be nice to find an example in which

the basis defining the truncation is provided by forms of mixed degree.

A better characterization of the expansion forms could also allow to conclude about

the consistency of the truncation, for instance checking whether the 4d solutions lift to 10d

solutions (see [19] for a first example in this sense). In this context, in order to study the

10d Einstein equations it would be useful to dispose of a formula generalizing (4.20) and

expressing the full Ricci tensor of the internal manifold, and not just its trace, in terms of

the SU(3) × SU(3) structure data.
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A. Conventions

A.1 Hodge dual

In the main text we deal with a M10 = M4 ×M6 spacetime. M6 is a Riemannian manifold,

while M10 and M4 are Lorentzian manifolds with a mostly + signature metric: (−+ · · ·+).

Our definition of the Hodge dual on Md is:

∗(dxµ1 ∧ . . . ∧ dxµp) :=
1

(d− p)!
ǫ
µ1...µp

µp+1...µd
dxµp+1 ∧ . . . ∧ dxµd , (A.1)

with ǫ12...d =
√

|gd|. In the main text the xµ coordinates are associated with M4, but

in (A.1) and in the forthcoming (A.3) they are generic for Md. We recall that on a p-form

Ap :

∗ ∗ Ap = (−)p(d−p)+tAp , (A.2)

where t = 0 if Md is Riemannian, and t = 1 if Md is Lorentzian.

If Ap and Bq are p– and q– forms respectively (p ≤ q) we define

ApyBq :=
1

p!(q − p)!
Aµ1...µpBµ1...µpµp+1...µqdx

µp+1 ∧ · · · ∧ dxµq . (A.3)

Then we have

Ap ∧ ∗Bp = ApyBp ∗ 1 , (A.4)

so that the kinetic term of a p-form potential Ap can be written as −1
2

∫
dA ∧ ∗dA .

If F̂p = Fp−k ∧ ωk is a p-form living on M10, while Fp−k lives on M4 and ωk lives on

M6, then the 10d Hodge dual splits into 4d and 6d Hodge duals as follows:

∗F̂n = (−1)k(n−k) ∗ Fn−k ∧ ∗ωk . (A.5)

Recalling the definition of the involution λ in eq. (2.5) we also deduce

∗λ(F̂n) = ∗λ(Fn−k) ∧ ∗λ(ωk) . (A.6)

A.2 Gamma matrices, Spin(6) spinors and SU(3) structures

The Cliff(6) gamma matrices γm are all purely imaginary and hermitian. The six-

dimensional chirality matrix is defined as:

γ =
i

6!
ǫmnpqrsγ

mnpqrs , (A.7)
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and the following identity holds:

γγm1...mk
=
i(−)[

k+1
2

]

(6 − k)!
ǫm1...mkmk+1...m6γ

mk+1...m6 . (A.8)

If η+ is a Spin(6) spinor satisfying γη+ = η+, then we define its chiral conjugate as η− ≡ η∗+.

The bispinors introduced in the main text are better seen using the following Fierz

identity between two Spin(6) spinors ψ,χ :

ψ ⊗ χ† =
1

8

6∑

k=0

1

k!

(
χ†γmk ...m1ψ

)
γm1...mk . (A.9)

Let’s now turn to the SU(3) structure conventions. We relate the different SU(3)–

invariant objects on M6 as follows:

gmn = JmpI
p
n , (A.10)

Jmn = ∓iη†±γmnη±||η+||−2 , Ωmnp = −iη†−γmnpη+||η+||−2 . (A.11)

where η± are globally defined and nowhere vanishing chiral spinors, I is the almost complex

structure (I2 = −1), J is the almost symplectic 2-form, and Ω is the (3,0)–form. J and Ω

satisfy J ∧ Ω = 0, so that J is (1,1) with respect to I.

A useful decomposition of the chirality projectors on the basis of eigenstates

{η±, γmη∓} is:
1 ± γ

2
=

(
η±η

†
± +

1

2
γmη∓η

†
∓γm

)
||η+||−2 . (A.12)

Then one has:

γmη+ = −iJmnγ
nη+ (A.13)

γmnη+ = iJmnη+ +
i

2
Ωmnpγ

pη− (A.14)

γmnpη+ = iΩmnpη− + 3iJ[mnγp]η+ . (A.15)

Using the holomorphic projector P = 1
2(1 − iI) we can introduce the gamma matrices

with holomorphic/antiholomorphic indices i, ı̄ = 1, 2, 3 :

γi := P i
nγ

n and γ ı̄ := P̄ ı̄
nγ

n . (A.16)

From (A.13) and (A.10) we see that γiη+ = 0. Instead γ ı̄η+ transforms in the 3̄ of SU(3).

With the conventions listed above, one also has:

∗J =
1

2
J ∧ J , ∗1 ≡ vol6 =

1

6
J ∧ J ∧ J =

i

8
Ω ∧ Ω̄ , (A.17)

as well as, using (A.9):

8η+ ⊗ η†+ = ||η+||2e−iJ , 8η+ ⊗ η†− = −i||η+||2 Ω . (A.18)
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A.3 SU(3) × SU(3) structures and Spin(6) spinors

On the bispinors �Φ0
± = 8η1

+⊗η2†
± (the Clifford map “ / ” was defined in (3.10)) one naturally

defines an action of γi1 , γ ı̄1 from the left and of γi2 , γ ı̄2 from the right, where γi1 (γi2) is

holomorphic with respect to the almost complex structure I1 (I2) associated with η1
+ (η2

+).

Then the 6 annihilators of the pure spinor �Φ0
+ are

→
γ i1 and

←
γ ı̄2 , while �Φ0

− is annihilated

by
→
γ i1 and

←
γ i2 . The conjugate gamma matrices act as creators. Applying the Clifford

map backwards, these facts can also be translated in the polyform picture. For the gamma

matrices, the dictionary is [27]:

γm/A± = (((((((((
(dxm∧ +gmnι∂n)A± , /A±γ

m = ± (((((((((
(dxm∧ −gmnι∂n)A± , (A.19)

where A± is any even/odd polyform. Abusing of the notation, sometimes we write expres-

sions like
→
γ mA± and A±

←
γ m, to be read as the Clifford map counter-image of (A.19).

A basis for the decomposition of ∧•T ∗ under the SU(3) × SU(3) subgroup of O(6,6)

defined by the ‘lowest weight states’ Φ0
± can be built acting with creators [24, 27, 55]:

Φ0
+

Φ0
+γ

i2 γ ı̄1Φ0
+

Φ0
−γ

ı̄2 γ ı̄1Φ0
+γ

i2 γi1Φ̄0
−

Φ0
− γ ı̄1Φ0

−γ
ı̄2 γi1Φ̄0

−γ
i2 Φ̄0

−

γ ı̄1Φ0
− γi1Φ̄0

+γ
ı̄2 Φ̄0

−γ
i2

γi1Φ̄0
+ Φ̄0

+γ
ı̄2

Φ̄0
+

(A.20)

Each element of this ‘generalized diamond’ transforms in a definite representation (r, s) of

SU(3) × SU(3) . We call Ur,s each of these subbundles of ∧•T ∗.
A basis for the decomposition under the SU(3) × SU(3) structure defined by the b-

transformed pure spinors Φ± = e−bΦ0
± is obtained simply acting with e−b on the above

diamond (in the polyform picture).

One of the nice properties of the basis (A.20) is the orthogonality of its elements in

the Mukai pairing: the only non-zero pairings are between elements in conjugate represen-

tations (r, s) and (̄r, s̄) of SU(3) × SU(3) .

The action of the operator ∗λ can be easily evaluated using the Clifford map and

eq. (A.8):

���∗ λ(A) = −iγ/A . (A.21)

Thus the result of the action of ∗λ on each element of the diamond (A.20) is just +i or −i.
The Mukai pairing (3.2) between two forms can instead be evaluated via:

〈Ak, C6−k〉 =
i

8
tr(γ /A T

k ��C6−k)vol6 . (A.22)

For instance, for pure spinors Φ± = e−bΦ0
±, with Φ0

± built as bispinors, one finds

i〈Φ±, Φ̄±〉 ≡ i〈Φ0
±, Φ̄

0
±〉 = 8||η1

±||2||η2
±||2vol6 . (A.23)
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B. Type IIA action with fluxes

In this appendix we make explicit the compatibility of the system of democratic

EoM/Bianchi identities (with no localized sources) considered in section 2 with the stan-

dard formulation of the type IIA action.23 In doing so, we reconsider an issue already

discussed in the literature [9, 57] concerning the expression for the Chern-Simons piece of

the action when NS and RR background fluxes are switched on. We derive a general form

of this Chern-Simons term by requiring consistency with the equations of motion.

In order to make contact with the standard formulation of (massive) type IIA super-

gravity, we need to break the democracy among the RR fields stated in section 2. Eliminat-

ing via the self-duality relations (2.5) the forms24 F6, F8, F10 from eqs. (2.6) and (2.9), we

are left with the following set of independent equations in terms of H,F0, F2 and F4 only:

dH = 0 , (B.1)

dF0 = 0 , dF2 −HF0 = 0 , dF4 −H ∧ F2 = 0 , (B.2)

d(e−2φ ∗H) − F0 ∧ ∗F2 − F2 ∧ ∗F4 −
1

2
F4 ∧ F4 = 0 , (B.3)

d ∗ F2 +H ∧ ∗F4 = 0 , d ∗ F4 +H ∧ F4 = 0 . (B.4)

In a topologically trivial background (where no fluxes can be switched on), the Bianchi

identities (B.1) and (B.2) are solved in terms of globally defined NS 2-form B and 1– and

3-form RR potentials C1 and C3 :

H = dB , F0 = const , F2 = dC1 +BF0 , F4 = dC3 −H ∧C1 +
1

2
B2F0 . (B.5)

Now we can immediately check that the remaining equations (B.3) and (B.4) correspond

to the EoM for the potentials B,C1 and C3 descending from the standard massive type

IIA (bosonic) action SIIA, with mass parameter F0. Denoting SIIA = Skinetic + SCS, we

have (see e.g. [39]):

Skinetic=
1

2

∫ [
e−2φ

(
R∗1+4dφ ∧ ∗dφ− 1

2
H ∧ ∗H

)
−1

2
(F0 ∧∗F0+F2 ∧∗F2+F4 ∧∗F4)

]
,(B.6)

SCS = −1

4

∫ [
BdC3dC3 +

1

3
F0B

3dC3 +
1

20
F 2

0B
5

]
(B.7)

(the ∧ symbol is understood in SCS). Notice that the F0 = 0 limit yields the standard

massless type IIA action [58].

Things become more subtle if one looks for general global solutions of the Bianchi

identities (B.1) and (B.2) on topologically non-trivial backgrounds, allowing for fluxes of

the NS and RR field-strengths. In this case the expressions in (B.5) are modified as follows

23The problem of writing a supergravity action in the presence of general D-branes is studied e.g. in [40,

56]. These papers also discuss a possible background independent formulation.
24In this appendix all the forms are ten dimensional. Since there is no risk of confusion, we omit the hat

symbol over them.
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(F0 is still a constant parameter):

H = Hfl + dB ,

F2 = dC1 + F fl
2 +BF0 ,

F4 = dC3 −H ∧ C1 + F fl
4 +B ∧ F fl

2 +
1

2
B2F0 , (B.8)

where the forms labeled with ‘fl’ are defined as the non-exact parts of the solutions, satis-

fying the conditions

HflF0 = 0 , dHfl = 0 , dF fl
2 = 0 , dF fl

4 −Hfl ∧ F fl
2 = 0 . (B.9)

The first condition holds because if F0 6= 0, then the Bianchi identity dF2 − HF0 = 0

implies that H is exact and therefore Hfl = 0. In the expression (B.10) below we will

however keep both Hfl and F0, also because the F0H
fl = 0 constraint can be invalidated

by the possible introduction of localized sources such as O6 planes,25 which modify the

Bianchi identity for F2 (see for instance [57, 59, 41, 56]).

We should now consider how the new expressions (B.8) for the field-strengths enter in

the type IIA action. While we can simply substitute such new expressions into the kinetic

terms (B.6), the determination of the Chern-Simons action (B.7) is more delicate. In [9]

a modified form of the Chern-Simons term was obtained by requiring consistency with

the structure of the expected 4d N = 2 gauged supergravity after compactification on a

Calabi-Yau three-fold, while in appendix A of [57] it was deduced by properly modifying the

M-theory Chern-Simons term in order to accomodate for a 4-form flux, and then performing

the reduction to ten dimensions.

Here we propose a general expression for SCS by imposing that the equations of motion

derived from the action still have the form (B.3), (B.4). We can see that this requirement

is satisfied if we preserve the form (B.6) for Skinetic, and modify the Chern-Simons term

as follows:

SCS = −1

4

∫ [
C3H

fl
(
dC3 + 2F fl

4

)
+B

(
dC3 + F fl

4

)(
dC3 + F fl

4

)
+B2F fl

2

(
dC3 + F fl

4

)

+
1

3
B3F fl

2 F
fl
2 +

1

3
F0B

3
(
dC3 + F fl

4

)
+

1

4
F0B

4F fl
2 +

1

20
F 2

0B
5

]
. (B.10)

This expression not only is in agreement with the ones given in [9, 57], but also extends

it to the case of non-vanishing F fl
2 , which was not considered in those papers.

One can lastly verify that the field-strengths H,F2, F4, as well as the complete action

SIIA, are invariant under the following globally defined gauge transformations involving the

k-form (infinitesimal) parameters Λk:

δB = dΛ1 , δC1 = dΛ0 − Λ1F0 , δC3 = dΛ2 −HΛ0 − Λ1(F
fl
2 +BF0) . (B.11)

The EoM (B.3), (B.4) are of course gauge-invariant due to the invariance of the

field-strengths.

25In this case of course the action needs to be completed with the terms describing the couplings to the

localized sources.

– 36 –



J
H
E
P
0
6
(
2
0
0
8
)
0
2
7

References

[1] M. Bodner, A.C. Cadavid and S. Ferrara, (2, 2) vacuum configurations for type IIA

superstrings: N = 2 supergravity Lagrangians and algebraic geometry, Class. and Quant.

Grav. 8 (1991) 789.

[2] M. Bodner and A.C. Cadavid, Dimensional reduction of type IIB supergravity and exceptional

quaternionic manifolds, Class. and Quant. Grav. 7 (1990) 829;

R. Bohm, H. Gunther, C. Herrmann and J. Louis, Compactification of type IIB string theory

on Calabi-Yau threefolds, Nucl. Phys. B 569 (2000) 229 [hep-th/9908007].

[3] L. Andrianopoli et al., N = 2 supergravity and N = 2 super Yang-Mills theory on general

scalar manifolds: symplectic covariance, gaugings and the momentum map, J. Geom. Phys.

23 (1997) 111 [hep-th/9605032].

[4] M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423

(2006) 91 [hep-th/0509003];

M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733

[hep-th/0610102];
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